分析 根據(jù)題意,由函數(shù)的單調(diào)性的性質(zhì)可得$\left\{\begin{array}{l}{a-1<0}\\{0<a<1}\\{2(a-1)-2a≥lo{g}_{a}2}\end{array}\right.$,解可得a的取值范圍,即可得答案.
解答 解:根據(jù)題意,函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x-2a,x<2\\{log_a}x,x≥2\end{array}\right.$在R上單調(diào)遞減,
必有$\left\{\begin{array}{l}{a-1<0}\\{0<a<1}\\{2(a-1)-2a≥lo{g}_{a}2}\end{array}\right.$,化簡可得$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}2≤-2}\end{array}\right.$,
解可得$\frac{\sqrt{2}}{2}$≤a<1,
即a的取值范圍是$[\frac{{\sqrt{2}}}{2},1)$;
故答案為:$[\frac{{\sqrt{2}}}{2},1)$.
點(diǎn)評 本題考查函數(shù)單調(diào)性的應(yīng)用,關(guān)鍵是掌握函數(shù)單調(diào)性的定義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{3}{5}$ | B. | ±$\frac{4}{5}$ | C. | ±$\frac{3}{4}$ | D. | ±$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com