A. | 4024 | B. | 4026 | C. | 4028 | D. | 4030 |
分析 由于$\left\{{\frac{1}{{{a_n}+{a_{n+1}}}}}\right\}$是等差數(shù)列,可得$\frac{2}{{a}_{1}(q+{q}^{2})}$=$\frac{1}{{a}_{1}(1+q)}$+$\frac{1}{{a}_{1}({q}^{2}+{q}^{3})}$,又a1=1,解得q,進而得出.
解答 解:∵$\left\{{\frac{1}{{{a_n}+{a_{n+1}}}}}\right\}$是等差數(shù)列,∴2$\frac{1}{{a}_{2}+{a}_{3}}$=$\frac{1}{{a}_{1}+{a}_{2}}$+$\frac{1}{{a}_{3}+{a}_{4}}$,即$\frac{2}{{a}_{1}(q+{q}^{2})}$=$\frac{1}{{a}_{1}(1+q)}$+$\frac{1}{{a}_{1}({q}^{2}+{q}^{3})}$,又a1=1,化為:q=1.
∴公差d=$\frac{1}{2}$-$\frac{1}{2}$=0,首項=2,
∴$(\frac{1}{a_2}+\frac{1}{a_3})+(\frac{1}{a_3}+\frac{1}{a_4})+…+(\frac{1}{{{a_{2015}}}}+\frac{1}{{{a_{2016}}}})$=2×2014=4028.
故選:C.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x>0 | B. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0 | ||
C. | ?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0 | D. | ?x∈(-∞,$\frac{1}{2}$],使得x+log2x>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 正方體的體積與棱長的關系 | |
B. | 學生的成績和體重 | |
C. | 路上酒后駕駛的人數(shù)和交通事故發(fā)生的多少 | |
D. | 水的體積和重量 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com