【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).(參考數(shù)據(jù): )
(1)討論函數(shù)的單調(diào)性;
(2)若時,函數(shù)有三個零點,分別記為,證明: .
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)先求函數(shù)導數(shù),根據(jù)參數(shù)a討論:當時, 是常數(shù)函數(shù),沒有單調(diào)性.當時,先減后增;當時,先增后減;(2)先化簡方程,整體設元轉(zhuǎn)化為一元二次方程: .其中,再利用導數(shù)研究函數(shù)的圖像,根據(jù)圖像確定根的取值范圍,進而可證不等式.
試題解析:解:(1)因為的定義域為實數(shù),
所以.
①當時, 是常數(shù)函數(shù),沒有單調(diào)性.
②當時,由,得;由,得.
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
③當時,由得, ; 由,得,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(2)因為,
所以,即.
令,則有,即.
設方程的根為,則,
所以是方程的根.
由(1)知在單調(diào)遞增,在上單調(diào)遞減.
且當時, ,當時, ,
如圖,依據(jù)題意,不妨取,所以,
因為,
易知,要證,即證.
所以,又函數(shù)在上單調(diào)遞增,
所以,所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命題p:log2[g(x)]≥1是假命題.求x的取值范圍;
(2)若命題q:x∈(﹣∞,3).命題r:x滿足f(x)<0或g(x)<0為真命題.¬r是¬q的必要不充分條件,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】解答題
(1)設p:實數(shù)x滿足(x﹣3a)(x﹣a)<0,其中a>0,q:實數(shù)x滿足 ,若p是q的充分不必要條件,求實數(shù)a的取值范圍;
(2)設命題p:“函數(shù) 無極值”;命題q:“方程 表示焦點在y軸上的橢圓”,若p或q為真命題,p且q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= ,
(1)在下列直角坐標系中畫出f(x)的圖象;
(2)若f(x)=3,求x的值;
(3)看圖象寫出函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判斷f(x)﹣g(x)的奇偶性,并說明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓錐和圓柱的組合體(它們的底面重合),圓錐的底面圓半徑為, 為圓錐的母線, 為圓柱的母線, 為下底面圓上的兩點,且, , .
(1)求證:平面平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的極值點的個數(shù);
(Ⅱ)若函數(shù)的圖象與函數(shù)的圖象有兩個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系中,曲線與軸負半軸交于點,直線與相切于, 為上任意一點, 為在上的射影, 為的中點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)軌跡與軸交于,點為曲線上的點,且, ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com