【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的極值點的個數(shù);
(Ⅱ)若函數(shù)的圖象與函數(shù)的圖象有兩個不同的交點,求實數(shù)的取值范圍.
【答案】(Ⅰ)詳見解析; (Ⅱ).
【解析】試題分析:(1)對函數(shù) 進行求導,根據(jù)基本不等式得出 的范圍,按照 的最小值是否在定義域內(nèi)分兩類討論,: ①當, 在上單調(diào)遞增,所以沒有極值點;②當,轉(zhuǎn)化為方程正數(shù)解的個數(shù);(2) 函數(shù)的圖象與函數(shù)的圖象有兩個不同的交點,轉(zhuǎn)化為由兩個不同的根,通過參變分離,構(gòu)造新的函數(shù),求導判斷單調(diào)性與最值,求出參數(shù)的范圍.
試題解析:(Ⅰ),
∵,∴,
①當,即時, 對恒成立, 在上單調(diào)遞增,所以沒有極值點;
②當,即時,方程有兩個不等正數(shù)解, ,
,
不妨設(shè),則當時, , 為增函數(shù);當時, , 為減函數(shù); 時, , 為增函數(shù),所以, 分別為極大值點和極小值點,即有兩個極值點.
綜上所述,當時, 沒有極值點;當時, 有兩個極值點.
(Ⅱ)令,得,即,
∵,∴,
令(),
,
∵,∴時, , 為減函數(shù);
時, , 為增函數(shù),∴,
當時, ,當時, ,
∵函數(shù)圖象與函數(shù)圖象有兩個不同交點,∴實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).(參考數(shù)據(jù): )
(1)討論函數(shù)的單調(diào)性;
(2)若時,函數(shù)有三個零點,分別記為,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是 . (填序號)
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②在同一平面直角坐標系中,y=2x與y=2﹣x的圖象關(guān)于y軸對稱;
③y=( )﹣x是增函數(shù);
④定義在R上的奇函數(shù)f(x)有f(x)f(﹣x)≤0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=( )x .
(1)求當x>0時f(x)的解析式;
(2)畫出函數(shù)f(x)在R上的圖象;
(3)寫出它的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩個命題p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 與 為互相垂直的單位向量, , 且 與 的夾角為銳角,則實數(shù)λ的取值范圍是( )
A.(﹣∞,﹣2)
B.( ,+∞)
C.(﹣2, )
D.(﹣ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com