10.已知直線(xiàn)l1的方程為x-y-3=0,l1為拋物線(xiàn)x2=ay(a>0)的準(zhǔn)線(xiàn),拋物線(xiàn)上一動(dòng)點(diǎn)P到l1,l2距離之和的最小值為2$\sqrt{2}$,則實(shí)數(shù)a的值為(  )
A.lB.2C.4D.28

分析 利用拋物線(xiàn)定義,距離和的最小值為拋物線(xiàn)焦點(diǎn)F(0,$\frac{a}{4}$)到直線(xiàn)l1:x-y-3=0的距離.

解答 解:由題意,利用拋物線(xiàn)定義,距離和的最小值為拋物線(xiàn)焦點(diǎn)F(0,$\frac{a}{4}$)到直線(xiàn)l1:x-y-3=0的距離,
∴距離之和的最小值d=$\frac{|0-\frac{a}{4}-3|}{\sqrt{2}}$=2$\sqrt{2}$,
∴a=4.
故選:C.

點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用拋物線(xiàn)的簡(jiǎn)單性質(zhì)解決實(shí)際問(wèn)題,靈活運(yùn)用點(diǎn)到直線(xiàn)的距離公式化簡(jiǎn)求值,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上下左右頂點(diǎn)分別為A,B,C,D,且左右的焦點(diǎn)為F1,F(xiàn)2,且以F1F2為直徑的圓內(nèi)切于菱形ABCD,則橢圓的離心率e為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{1+\sqrt{5}}}{2}$D.$\frac{{-1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,若輸入A的值為2,則輸出的n值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.從1,2,3,4,5,6中任取三個(gè)數(shù),則這三個(gè)數(shù)構(gòu)成一個(gè)等差數(shù)列的概率為(  )
A.$\frac{3}{10}$B.$\frac{3}{7}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,則f(f(-2))=14,函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{3m}$+$\frac{{y}^{2}}{m}$=1(m>0)的長(zhǎng)軸長(zhǎng)為2$\sqrt{6}$,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程和離心率;
(Ⅱ)設(shè)動(dòng)直線(xiàn)l與y軸相交于點(diǎn)B,點(diǎn)A(3,0)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)P在橢圓C上,求|OB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,B=75°,C=60°,c=1,則最短邊的邊長(zhǎng)等于( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知α∈($-\frac{π}{4}$,0),β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=$\frac{5}{13}$,則cos(α+$\frac{5π}{4}$)=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在三棱錐D-ABC,AB=BC=CD=DA=8,∠ADC=∠ABC=120°,M、O分別為棱BC,AC的中點(diǎn),DM=4$\sqrt{2}$.
(1)求證:平面ABC⊥平面MDO;
(2)求點(diǎn)M到平面ABD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案