8.甲、乙兩個袋子中,各放有大小、形狀和個數(shù)相同的小球若干.每個袋子中標(biāo)號為0的小球為1個,標(biāo)號為1的2個,標(biāo)號為2的n個.從一個袋子中任取兩個球,取到的標(biāo)號都是2的概率是$\frac{1}{10}$.
(Ⅰ)求n的值;
(Ⅱ)從甲袋中任取兩個球,已知其中一個的標(biāo)號是1的條件下,求另一個標(biāo)號也是1的概率.

分析 (Ⅰ)利用等可能事件概率計算公式列出方程,能求出n.
(Ⅱ)從甲袋中任取兩個球,設(shè)“其中一個球的標(biāo)號是1”為事件A,“另一個球的標(biāo)號也是1”為事件B,先求出P(A,再求出P(AB),由此利用條件概率計算公式能求出已知其中一個的標(biāo)號是1的條件下,另一個標(biāo)號也是1的概率.

解答 解:(Ⅰ)∵袋子中標(biāo)號為0的小球為1個,標(biāo)號為1的2個,標(biāo)號為2的n個.
從中任取兩個球,取到的標(biāo)號都是2的概率是$\frac{1}{10}$.
∴$\frac{{C}_{n}^{2}}{{C}_{1+2+n}^{2}}$=$\frac{1}{10}$,解得n=2.
(Ⅱ)從甲袋中任取兩個球,設(shè)“其中一個球的標(biāo)號是1”為事件A,“另一個球的標(biāo)號也是1”為事件B,
P(A)=$\frac{{C}_{5}^{2}-{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{7}{10}$,
P(AB)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,
∴已知其中一個的標(biāo)號是1的條件下,另一個標(biāo)號也是1的概率:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{1}{10}}{\frac{7}{10}}$=$\frac{1}{7}$.
故答案為:$\frac{1}{7}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意條件概率的計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x>3,則當(dāng)函數(shù)$f(x)=x+\frac{4}{x-3}$取得最小值時,x=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|$=1,|$\overrightarrow b$|=2,$(3\overrightarrow a-\overrightarrow b)$⊥$(\overrightarrow a+\overrightarrow b)$,則向量$\overrightarrow a$與向量$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中正確的是( 。
A.若兩個向量相等,則它們的起點和終點分別重合
B.模相等的兩個平行向量是相等向量
C.若$\overrightarrow{a}$和$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
D.零向量與其它向量都共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)化簡$\frac{cos(α-\frac{3}{2}π)}{sin(\frac{π}{2}+α)}$•sin(α-π)•cos(2π-α);
(Ⅱ)已知sin θ=$\frac{12}{13}$,θ為銳角,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y滿足方程2x+y+5=0,那么$\sqrt{{x^2}+{y^2}-4x-2y+5}$的最小值為( 。
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知2cosθ+sinθ=0,且θ∈(0,π).
(Ⅰ)分別求tanθ,sinθ,cosθ的值;
(Ⅱ)若sin(θ-φ)=$\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}$<φ<π,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.條件“x=1”是條件“x2-1=0”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(1,$\sqrt{3}$),若(1-λ)$\overrightarrow{OA}$+λ$\overrightarrow{OB}$-$\overrightarrow{OC}$=$\overrightarrow{0}$(λ∈R),則|$\overrightarrow{OC}$|的最小值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案