【題目】如圖,斜率為的直線交拋物線兩點(diǎn),已知點(diǎn)的橫坐標(biāo)比點(diǎn)的橫坐標(biāo)大4,直線交線段于點(diǎn),交拋物線于點(diǎn)

1)若點(diǎn)的橫坐標(biāo)等于0,求的值;

2)求的最大值.

【答案】18;2

【解析】

1)先根據(jù)點(diǎn)的坐標(biāo)得的值,然后將直線的方程與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,最后利用弦長(zhǎng)公式求解;(2)先設(shè)出直線的方程,與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,再根據(jù)點(diǎn)的橫坐標(biāo)滿足的條件可求得滿足的關(guān)系式將直線的方程聯(lián)立,可求得點(diǎn)的橫坐標(biāo),將直線的方程與拋物線方程聯(lián)立,構(gòu)建關(guān)于的二次方程,結(jié)合根與系數(shù)的關(guān)系、弦長(zhǎng)公式、二次函數(shù)的最值即可求解.

解:(1, 聯(lián)立得

設(shè),則

2)設(shè)的方程為,代入,得,

,

, 聯(lián)立得

,

.所以,當(dāng)時(shí),取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對(duì)比實(shí)驗(yàn),得到如下統(tǒng)計(jì)數(shù)據(jù):

未感染病毒

感染病毒

總計(jì)

未注射疫苗

30

注射疫苗

70

總計(jì)

100

100

200

現(xiàn)從未注射疫苗的小白鼠中任取1只,取到感染病毒的小白鼠的概率為.

)能否有的把握認(rèn)為注射此種疫苗有效?

)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機(jī)抽取2只對(duì)注射疫苗情況進(jìn)行核實(shí),求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.

附:,

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某植物園內(nèi)有一塊圓形區(qū)域,在其內(nèi)接四邊形內(nèi)種植了兩種花卉,其中區(qū)域內(nèi)種植蘭花,區(qū)域內(nèi)種植丁香花,對(duì)角線BD是一條觀賞小道.測(cè)量可知邊界,

1)求觀賞小道BD的長(zhǎng)及種植區(qū)域的面積;

2)因地理?xiàng)l件限制,種植丁香花的邊界BCCD不能變更,而邊界AB,AD可以調(diào)整,使得種植蘭花的面積有所增加,請(qǐng)?jiān)?/span>BAD上設(shè)計(jì)一點(diǎn)P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個(gè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓的離心率為,為橢圓上位于第一象限上的點(diǎn),為橢圓的上頂點(diǎn),直線軸相交于點(diǎn),,的面積為

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)直線過橢圓的右焦點(diǎn),且與橢圓相交于兩點(diǎn)(、在直線的同側(cè)),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個(gè)有趣的問題:已知一對(duì)兔子每個(gè)月可以生一對(duì)兔子,而一對(duì)兔子出生后在第二個(gè)月就開始生小兔子.假如沒有發(fā)生死亡現(xiàn)象,那么兔子對(duì)數(shù)依次為:1,1,2,35,8,13,2134,5589,144……,這就是著名的斐波那契數(shù)列,它的遞推公式是,其中,.若從該數(shù)列的前120項(xiàng)中隨機(jī)地抽取一個(gè)數(shù),則這個(gè)數(shù)是奇數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)將的單調(diào)區(qū)間和極值;

2)若有兩個(gè)零點(diǎn),求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方體ABCDHKLE中,底面ABCD是邊長(zhǎng)為3的正方形,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)F在線段AH上,且,BE與底面ABCD所成角為

1)求證:ACBE;

2)求二面角FBED的余弦值;

3)設(shè)點(diǎn)M在線段BD上,且AM//平面BEF,求DM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過交點(diǎn),,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案