精英家教網 > 高中數學 > 題目詳情

【題目】設全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求實數a的取值范圍.

【答案】
(1)解:當a=4,A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a}

={x|3≤x≤5},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

∴A∪B={x|x≥3或x≤1}


(2)解:A={x||x﹣a|≤1}

={x|﹣1+a≤x≤1+a},

B={x|(4﹣x)(x﹣1)≤0}

={x|x≥4或x≤1},

若A∩B=A,則AB,

∴﹣1+a≥4或1+a≤1,

∴a≥5或a≤0


【解析】(1)當a=4,A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a}={x|3≤x≤5},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},由此能求出A∪B.(2)A={x||x﹣a|≤1}={x|﹣1+a≤x≤1+a},B={x|(4﹣x)(x﹣1)≤0}={x|x≥4或x≤1},若A∩B=A,則AB,由此能求出實數a的取值范圍.
【考點精析】通過靈活運用集合的并集運算,掌握并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為(25x)萬元(國家規(guī)定大貨車的報廢年限為10年).

1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計收入+銷售收入-總支出)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=
(1)證明函數f(x)是奇函數;
(2)證明函數f(x)在(﹣∞,+∞)內是增函數;
(3)求函數f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點

(1)求點的軌跡的方程;

(2)若點是直線上兩個不同的點,且的內切圓方程為,直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的參數方程為 (θ為參數),直線l經過點P(1,1),傾斜角 ,
(1)寫出直線l的參數方程;
(2)設l與圓C相交于兩點A,B,求點P到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《太陽的后裔》是第一部中國與韓國同步播出的韓劇,愛奇藝視頻網站在某大學隨機調查了110名學生,得到如表列聯(lián)表:由表中數據算得K2的觀測值k≈7.8,因此得到的正確結論是(

總計

喜歡

40

20

60

不喜歡

20

30

50

總計

60

50

110

(K2≥k)

0.100

0.010

0.001

k

2.706

6.635

10.828

附表:K2=
A.有99%以上的把握認為“喜歡該電視劇與性別無關”
B.有99%以上的把握認為“喜歡該電視劇與性別有關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上且以3為周期的奇函數,當時, ,則函數在區(qū)間上的零點個數是( )

A. 3 B. 5 C. 7 D. 9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}{n=1,2,3…,2015},圓C1x2+y2﹣4x﹣4y=0,圓C2x2+y2﹣2anx﹣2a2006ny=0,若圓C2平分圓C1的周長,則{an}的所有項的和為( )

A. 2014 B. 2015 C. 4028 D. 4030

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足:f(﹣x)+f(x)=ex+ex , 則稱f(x)為“e函數”.
(1)試判斷f(x)=ex+x3是否為“e函數”,并說明理由;
(2)若f(x)為“e函數”且
(。┣笞C:f(x)的零點在 上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

同步練習冊答案