【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.
【答案】(Ⅰ) 直線的參數(shù)方程為(為參數(shù)) 極坐標(biāo)方程為() (Ⅱ)
【解析】
(Ⅰ) 直線的普通方程為,可以確定直線過(guò)原點(diǎn),且傾斜角為,這樣可以直接寫出參數(shù)方程和極坐標(biāo)方程;
(Ⅱ)利用,把曲線的參數(shù)方程化為普通方程,然后把直線的參數(shù)方程代入曲線的普通方程中,化簡(jiǎn),利用根與系數(shù)的關(guān)系和參數(shù)的意義,可以求出的值.
解:(Ⅰ)直線的參數(shù)方程為(為參數(shù))
極坐標(biāo)方程為()
(Ⅱ)曲線的普通方程為
將直線的參數(shù)方程代入曲線中,得,
設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別是,則,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為已知實(shí)常數(shù),,則下列命題中錯(cuò)誤的是( )
A.若,則對(duì)任意實(shí)數(shù)恒成立;
B.若,則函數(shù)為奇函數(shù);
C.若,則函數(shù)為偶函數(shù);
D.當(dāng)時(shí),若,則 ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合且A中任意兩數(shù)之和不能被5整除,則的最大值為( )
A. 17B. 18C. 15D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,過(guò)作互相垂直的兩條直線分別與相交于,和,四點(diǎn).
(1)四邊形能否成為平行四邊形,請(qǐng)說(shuō)明理由;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),判斷并證明函數(shù)在區(qū)間上的單調(diào)性;
(2)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, , , 為等邊三角形, .
(1)求證:平面平面;
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是(單位:萬(wàn)元)和(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式,,今將萬(wàn)元資金投入甲、乙兩種商品,其中對(duì)甲商品投資(單位:萬(wàn)元).
(1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)問(wèn):如何分配資金,才能使得總利潤(rùn)(單位:萬(wàn)元)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),過(guò)點(diǎn)且傾斜角為的直線交曲線于,兩點(diǎn).
(Ⅰ)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(Ⅱ)求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com