【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

【答案】(Ⅰ) 直線的參數(shù)方程為(為參數(shù)) 極坐標(biāo)方程為() (Ⅱ)

【解析】

(Ⅰ) 直線的普通方程為,可以確定直線過(guò)原點(diǎn),且傾斜角為,這樣可以直接寫出參數(shù)方程和極坐標(biāo)方程;

(Ⅱ)利用,把曲線的參數(shù)方程化為普通方程,然后把直線的參數(shù)方程代入曲線的普通方程中,化簡(jiǎn),利用根與系數(shù)的關(guān)系和參數(shù)的意義,可以求出的值.

解:(Ⅰ)直線的參數(shù)方程為(為參數(shù))

極坐標(biāo)方程為()

(Ⅱ)曲線的普通方程為

將直線的參數(shù)方程代入曲線中,得,

設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別是,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中為已知實(shí)常數(shù),,則下列命題中錯(cuò)誤的是(

A.,則對(duì)任意實(shí)數(shù)恒成立;

B.,則函數(shù)為奇函數(shù);

C.,則函數(shù)為偶函數(shù);

D.當(dāng)時(shí),若,則 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A中任意兩數(shù)之和不能被5整除,則的最大值為(

A. 17B. 18C. 15D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,過(guò)作互相垂直的兩條直線分別與相交于,,四點(diǎn).

(1)四邊形能否成為平行四邊形,請(qǐng)說(shuō)明理由;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).若不等式上恒成立,則的最小值為( )

A. B. 1 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù).

1)當(dāng)時(shí),判斷并證明函數(shù)在區(qū)間上的單調(diào)性;

2)是否存在實(shí)數(shù),使得在閉區(qū)間上的最大值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, , 為等邊三角形, .

(1)求證:平面平面;

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是(單位:萬(wàn)元)和(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式,,今將萬(wàn)元資金投入甲、乙兩種商品,其中對(duì)甲商品投資(單位:萬(wàn)元).

1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;

2)問(wèn):如何分配資金,才能使得總利潤(rùn)(單位:萬(wàn)元)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),過(guò)點(diǎn)且傾斜角為的直線交曲線兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(Ⅱ)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案