【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),過點(diǎn)且傾斜角為的直線交曲線,兩點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;

(Ⅱ)求的最大值.

【答案】(1)見解析;(2).

【解析】

(1)的參數(shù)方程利用平方法消去參數(shù)可得曲線的直角坐標(biāo)方程根據(jù)過點(diǎn)且傾斜角為,可得直線的參數(shù)方程;(2)把直線的參數(shù)方程為參數(shù))代入,得 ,根據(jù)直線參數(shù)方程的幾何意義,結(jié)合韋達(dá)定理,輔助角公式利用三角函數(shù)的有界性即可得結(jié)果.

(1)消去參數(shù),得曲線的直角坐標(biāo)方程為,

直線的參數(shù)方程為為參數(shù)).

(2)把直線的參數(shù)方程為參數(shù))代入

,

所以 .

因?yàn)辄c(diǎn)在橢圓的外側(cè),根據(jù)參數(shù)的幾何意義可知,,不妨設(shè)

所以,,

,其中,

當(dāng)時(shí),取最大值,為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾個(gè)命題中,假命題是( )

A. “若,則”的否命題

B. ,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定

C. 是函數(shù)的一個(gè)周期”或“是函數(shù)的一個(gè)周期”

D. ”是“”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項(xiàng)均為正數(shù)的等比數(shù)列,.

1)求的通項(xiàng)公式;

2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一條直線與一個(gè)平面垂直,則稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的一條切線過點(diǎn).

(Ⅰ)求的取值范圍;

(Ⅱ)若.

①討論函數(shù)的單調(diào)性;

②當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好體育,得到表:

參照附表,得到的正確結(jié)論是  

附:由公式算得:

附表:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

1.323

2.702

2.706

3.841

5.024

6.635

7.879

A. 以上的把握認(rèn)為“愛好體育運(yùn)動(dòng)與性別有關(guān)”

B. 以上的把握認(rèn)為“愛好體育運(yùn)動(dòng)與性別無關(guān)”

C. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好體育運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好體育運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面

(2)若與底面所成的角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)函數(shù),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),則的值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案