給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

(I).(II).(III)直線縱截距的范圍是.

解析試題分析:(I)由題意聯(lián)立方程組

根據(jù),即可得到的取值范圍是.
(II)設(shè)直線方程為,
通過聯(lián)立 
設(shè)應(yīng)用韋達(dá)定理,結(jié)合的中點,,
得到,可建立的方程, 從而由得到使問題得解.
試題解析:(I)由題意知.
,
所以,解得,
所以求的取值范圍是.
(II)設(shè)直線方程為,
整理得,
化簡得
設(shè)

的中點,所以
因為,所以
,化簡得
,
所以
,所以
.
考點:橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構(gòu)成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知過點的橢圓的右焦點為,過焦點且與軸不重合的直線與橢圓交于兩點,點關(guān)于坐標(biāo)原點的對稱點為,直線分別交橢圓的右準(zhǔn)線,兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點的坐標(biāo)為,試求直線的方程;
(3)記,兩點的縱坐標(biāo)分別為,,試問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,右焦點為,右頂點在圓上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)點P為圓上一個動點,M為點P在y軸上的投影,動點Q滿足
(1)求動點Q的軌跡C的方程;
(2)一條直線l過點,交曲線C于A、B兩點,且A、B同在以點D(0,1)為圓心的圓上,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案