精英家教網 > 高中數學 > 題目詳情

某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)求證:

(1);(2)證明見解析

解析試題分析:(1)拋物線焦點在軸上,其標準方程為,其中焦點坐標為,故,,因此拋物線方程為;(2)實質上是要求的長,為此我們設,則點坐標為,利用點在拋物線上,代入可得出關于的二次方程,解方程求出線段長應該為正,故有,得證.
試題解析:(1)由拋物線焦點得,拋物線方程為
(2)設,則點
所以,,既

解得:
同理:


“蝴蝶形圖案”的面積

時,即“蝴蝶形圖案”的面積為8.
考點:(1)拋物線的標準方程;(2)圓錐曲線綜合問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于、兩點,若(為坐標原點),試判斷直線與圓的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(13分)如圖,某隧道設計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓。

(1)若最大拱高h為6 m,則隧道設計的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應如何設計拱高h和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及的值,使總造價最少。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓及定點,點是圓上的動點,點上,且滿足點的軌跡為曲線。
(1)求曲線的方程;
(2)若點關于直線的對稱點在曲線上,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓錐曲線的兩個焦點坐標是,且離心率為
(Ⅰ)求曲線的方程;
(Ⅱ)設曲線表示曲線軸左邊部分,若直線與曲線相交于兩點,求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點,使,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,離心率,右焦點為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的上頂點為,在橢圓上是否存在點,使得向量共線?若存在,求直線的方程;若不存在,簡要說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點.
(1)求證:OA⊥OB;
(2)當DAOB的面積等于時,求k的值. 

查看答案和解析>>

同步練習冊答案