【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,設上的動點,點軸上的投影,動點滿足,點的軌跡為曲線.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,點,為直線上兩點.

(1)求的參數(shù)方程;

(2)是否存在,使得的面積為8?若存在,有幾個這樣的點?若不存在,請說明理由.

【答案】(1)(2)見解析

【解析】

1)設,,根據(jù)題意可得D點坐標,結合,即可求的M的軌跡方程。

(2)由(1)可得點,求出l的普通方程,則可求出到直線的距離,結合輔助角公式可得d的最小值,帶入公式即可求的最小值,結合題意可進行求解和判斷。

(1)設,則.

得:.

(2)依題,直線,設點,設點到直線的距離為 .

代入,得,.

,∵,故存在符合題意的點,且存在兩個這樣的點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動,經調查測算,某產品的年銷售量(即該廠的年產量)萬件與年促銷費用萬元,滿足為常數(shù)),如果不搞促銷活動,則該產品的年銷售量只能是1萬件,已知2020年生產該產品的固定投入為8萬元,每生產1萬件,該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).

1)將2020年該產品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標準方程:

(1)橢圓的焦點在軸上,焦距為4,且經過點

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), .

1)當時, 上恒成立,求實數(shù)的取值范圍;

2)當時,若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線2xy10與直線x2y+10交于點P

1)求過點P且垂直于直線3x+4y150的直線l1的方程;(結果寫成直線方程的一般式)

2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ax21)﹣lnx

1)若yfx)在x2處的切線與y垂直,求a的值;

2)若fx≥0[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面上,給定非零向量,對任意向量,定義.

(1)若,,求;

(2)若,證明:若位置向量的終點在直線上,則位置向量的終點也在一條直線上;

(3)已知存在單位向量,當位置向量的終點在拋物線上時,位置向量終點總在拋物線上,曲線關于直線對稱,問直線與向量滿足什么關系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的左焦點為,點A的坐標為(01),點P為雙曲線右支上的動點,且APF1周長的最小值為6,則雙曲線的離心率為( 。

A.B.C.2D.

查看答案和解析>>

同步練習冊答案