【題目】已知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點P.
(1)求過點P且垂直于直線3x+4y﹣15=0的直線l1的方程;(結(jié)果寫成直線方程的一般式)
(2)求過點P并且在兩坐標軸上截距相等的直線l2方程(結(jié)果寫成直線方程的一般式)
科目:高中數(shù)學 來源: 題型:
【題目】設點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是( )
A.B.C.1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的普通方程為,曲線參數(shù)方程為(為參數(shù));以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,.
(1)求的參數(shù)方程和的直角坐標方程;
(2)已知是上參數(shù)對應的點,為上的點,求中點到直線的距離取得最小值時,點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為且橢圓上存在一點,滿足.
(1)求橢圓的標準方程;
(2)已知分別是橢圓的左、右頂點,過的直線交橢圓于兩點,記直線的交點為,是否存在一條定直線,使點恒在直線上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E、F為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是( )
A.點P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,設為:上的動點,點為在軸上的投影,動點滿足,點的軌跡為曲線.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,點,為直線上兩點.
(1)求的參數(shù)方程;
(2)是否存在,使得的面積為8?若存在,有幾個這樣的點?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在中,,的中點為,點在的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓分別與邊,的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸,為坐標原點建立平面直角坐標系,如圖②所示.
(1)求曲線的方程;
(2)過點的直線與曲線交于不同的兩點,,直線,分別交曲線于點,,設,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由無理數(shù)論引發(fā)的數(shù)字危機一直延續(xù)到19世紀,直到1872年,德國數(shù)學家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實數(shù)理論建立在嚴格的科學基礎上,才結(jié)束了無理數(shù)被認為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學史上的第一次大危機,所謂戴德金分割,是指將有理數(shù)集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,可能成立的是____.
①沒有最大元素,有一個最小元素;②沒有最大元素,也沒有最小元素;
③有一個最大元素,有一個最小元素;④有一個最大元素,沒有最小元素.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com