6.過點P(2,3)與已知直線x-y-7=0垂直的直線方程是( 。
A.x-y-5=0B.x+y-5=0C.x-y+5=0D.x+y+5=0

分析 根據(jù)與已知直線垂直的直線系方程可設(shè)與直線x-y-7=0垂直的直線方程為x+y+c=0,再把點(2,3)代入,即可求出c值,得到所求方程.

解答 解:∵所求直線方程與直線x-y-7=0垂直,
∴設(shè)所求直線為:x+y+c=0,
∵直線過點(2,3),
∴2+3+c=0,解得:c=-5,
∴所求直線方程為x+y-5=0.
故選:B.

點評 本題主要考查了互相垂直的兩直線方程之間的關(guān)系,以及待定系數(shù)法求直線方程,屬于常規(guī)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.畫區(qū)域:
(1)y>|x|+1;
(2)|x|>|y|;
(3)x>|y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,不經(jīng)過原點O的直線l:y=kx+m(k>0)與橢圓E相交于不同的兩點A、B,直線OA,AB,OB的斜率依次構(gòu)成等比數(shù)列.
(Ⅰ)求a,b,k的關(guān)系式;
(Ⅱ)若離心率$e=\frac{1}{2}$且$|{AB}|=\sqrt{7}|{m+\frac{1}{m}}|$,當(dāng)m為何值時,橢圓的焦距取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在(0,+∞)上函數(shù)f(x)滿足對任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),記數(shù)列an=f(2n),有以下命題:
①f(1)=0;
②a1=a2;
③令函數(shù)g(x)=xf(x),則$g(x)+g(\frac{1}{x})=0$;
④令數(shù)列bn=2n•an,則數(shù)列{bn}為等比數(shù)列.
其中真命題的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中裝有5只大小相同的球,編號分別為1,2,3,4,5,現(xiàn)從該袋中隨機(jī)地取出3只,被取出的球
中最大的號碼為ξ,則Eξ=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等比數(shù)列{an}中,若a1,a2,…,a8都是正數(shù),且公比q≠1,則( 。
A.a1+a8>a4+a5B.a1+a8<a4+a5
C.a1+a8=a4+a5D.a1+a8與a4+a5的大小關(guān)系不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點A,B分別為橢圓的右頂點和上頂點,且|AB|=$\sqrt{7}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)橢圓C的右焦點為F,過F點的兩條互相垂直的直線l1、l2,直線l1與橢圓C交于P,Q兩點,直線l2與直線x=4交于T點,求證:線段PQ的中點在直線OT上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,G為ABC的重心,延長線段AG交BC于F,B1F交BC1于E.
(1)求證:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow{a}$=(1,1),$\overrightarrow$=(-2,-2),|$\overrightarrow{c}$|=2$\sqrt{2}$,$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$)=2,則$\overrightarrow{a}$和$\overrightarrow{c}$的夾角θ=120°.

查看答案和解析>>

同步練習(xí)冊答案