A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
分析 設(shè)|AF|=a、|BF|=b,由拋物線定義結(jié)合梯形的中位線定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,結(jié)合基本不等式求得|AB|的范圍,從而可得$\frac{|MN|}{|AB|}$的最大值.
解答 解:設(shè)|AF|=a,|BF|=b,A、B在準(zhǔn)線上的射影點(diǎn)分別為Q、P,連接AQ、BQ
由拋物線定義,得AF|=|AQ|且|BF|=|BP|
在梯形ABPQ中根據(jù)中位線定理,得2|MN|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2-2ab,
又∵ab≤($\frac{a+b}{2}$) 2,
∴(a+b)2-2ab≥(a+b)2-2×($\frac{a+b}{2}$) 2=$\frac{1}{2}$(a+b)2
得到|AB|≥$\frac{\sqrt{2}}{2}$(a+b).
所以$\frac{|MN|}{|AB|}$≤$\frac{\frac{1}{2}(a+b)}{\frac{\sqrt{2}}{2}(a+b)}$=$\frac{\sqrt{2}}{2}$,即$\frac{|MN|}{|AB|}$的最大值為$\frac{\sqrt{2}}{2}$.
故選C.
點(diǎn)評(píng) 本題給出拋物線的弦AB對(duì)焦點(diǎn)F所張的角為直角,求AB中點(diǎn)M到準(zhǔn)線的距離與AB比值的取值范圍,著重考查了拋物線的定義與簡(jiǎn)單幾何性質(zhì)、梯形的中位線定理和基本不等式求最值等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,e3-4] | B. | [0,$\frac{1}{{e}^{3}}$+2] | C. | [$\frac{1}{{e}^{3}}$+2,e3-4] | D. | [e3-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | $\frac{{\sqrt{3}-1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{6}}}{3}R$ | B. | $\frac{{\sqrt{6}}}{3}R$ | C. | R | D. | $\sqrt{6}R$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com