【題目】已知函數(shù).
(1)求曲線在原點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間及最大值;
(3)證明:.
【答案】(1)(2)的遞增區(qū)間為,遞減區(qū)間為,函數(shù)最大值是(3)詳見解析
【解析】
(1)根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率k=f'(0)=0,據(jù)此分析可得答案;
(2)根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析函數(shù)的單調(diào)區(qū)間,據(jù)此分析可得函數(shù)的最大值;
(3)根據(jù)題意,由(2)的結(jié)論可得ln(x+1)≤x2+x,分別令x=1、、,可得ln2,lnln3﹣ln2,lnln4﹣ln3;將這些式子相加即可得的答案.
(1)所求切線的斜率
從而曲線在原點處的切線方程為
(2)
由得;由得
的遞增區(qū)間為,遞減區(qū)間為,函數(shù)最大值是
(3)由(2)可知:僅當時取等號別取得
以上不等式兩邊相加即得所證不等式
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為弘揚優(yōu)良傳統(tǒng),展示80年來的辦學(xué)成果,特舉辦“建校80周年教育成果展示月”活動,F(xiàn)在需要招募活動開幕式的志愿者,在眾多候選人中選取100名志愿者,為了在志愿者中選拔出節(jié)目主持人,現(xiàn)按身高分組,得到的頻率分布表如圖所示.
(1)請補充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為選拔出主持人,決定在第3、4、5組中用分層抽樣抽取6人上臺,求第3、4、5組每組各抽取多少人?
(3)在(2)的前提下,主持人會在上臺的6人中隨機抽取2人表演詩歌朗誦,求第3組至少有一人被抽取的概率?
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,是“算經(jīng)十書”中最重要的一種。在其第七章中有如下問題:“今有蒲生一日,長三尺,莞生一日,長一尺,蒲生日自半,莞生日自倍,問幾何日而長等?”意思是植物蒲發(fā)芽的第一天長高三尺,植物莞發(fā)芽的第一天長高一尺。蒲從第二天開始每天生長速度是前一天的一半,莞從第二天開始每天生長速度為前一天的兩倍。問這兩種植物在何時高度相同?
在此問題中,蒲和莞高度相同的時刻在( )
A. 第二天 B. 第三天 C. 第四天 D. 第五天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為了鼓勵廣大市民綠色出行,計劃在某個地段增設(shè)一個起點站,為了研究車輛發(fā)車的間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過抽樣調(diào)查五個不同時段的情形,統(tǒng)計得到如下數(shù)據(jù):
間隔時間(分鐘) | 8 | 10 | 12 | 14 | 16 |
等候人數(shù)(人) | 16 | 19 | 23 | 26 | 29 |
調(diào)查小組先從這5組數(shù)據(jù)中選取其中的4組數(shù)據(jù)求得線性回歸方程,再用剩下的1組數(shù)據(jù)進行檢驗,檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求的回歸方程是“理想回歸方程”.
(1)若選取的是前4組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷所求方程是否是“理想回歸方程”;
(2)為了使等候的乘客不超過38人,試用所求方程估計間隔時間最多可以設(shè)為多少分鐘?
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1, ,其中n∈N*.
(1)設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式.
(2)設(shè),數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得對于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以為極點, 軸的正半軸為極軸的極坐標系中,直線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線與曲線的直角坐標方程:
(Ⅱ)過點平行于直線的直線與曲線交于、兩點,若,求點軌跡的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中華民族是一個傳統(tǒng)文化豐富多彩的民族,各民族有許多優(yōu)良的傳統(tǒng)習俗,如過大年吃餃子,元宵節(jié)吃湯圓,端午節(jié)吃粽子,中秋節(jié)吃月餅等等,讓人們感受到濃濃的節(jié)目味道. 某小區(qū)有1200戶家庭,全部居民在小區(qū)的8棟樓內(nèi),各家庭在過年時各自包有肉餡餃子、蛋餡餃子和素餡餃子三種味道的餃子(假設(shè)每個家庭包有且只包有這三種味道中的一種味道的餃子).
(1)現(xiàn)根據(jù)餃子的不同味道用分層抽樣的方法從該小區(qū)隨機抽樣抽取戶家庭,其中有10戶家庭包的是素餡餃子,在抽取家庭中包肉餡餃子和蛋餡餃子的家庭分布在8棟樓內(nèi)的住戶數(shù)記錄為如圖所示的莖葉圖,已知肉餡餃子數(shù)的中位數(shù)為10,蛋餡餃子數(shù)的平均數(shù)為5,求該小區(qū)包肉餡餃子的戶數(shù);
(2)現(xiàn)從包肉餡餃子的家庭中隨機抽取100個家庭調(diào)查包餃子的用肉量(單位: )得到了如圖所示的頻率分布直方圖,若用肉量在第1小組內(nèi)的戶數(shù)為(為莖葉圖中的),試估計該小區(qū)過年時各戶用于包餃子的平均用肉量(各小組數(shù)據(jù)以組中值為代表).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com