【題目】袋子中有四個小球,分別寫有文、明、中、國四個字,有放回地從中任取一個小球,直到”“兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生03之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表文、明、中、國這四個字,以每三個隨機數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估計,恰好第三次就停止的概率為(

A.B.C.D.

【答案】B

【解析】

經(jīng)隨機模擬產(chǎn)生的18組隨機數(shù)中,恰好第三次就停止包含的基本事件有3個,由此可以估計恰好第三次就停止的概率.

解:經(jīng)隨機模擬產(chǎn)生的18組隨機數(shù)中,
232321230023123021132220001
231130133231013320122103233
恰好第三次就停止包含的基本事件有:
023123132,共3個,
由此可以估計,恰好第三次就停止的概率為.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.

(1),求實數(shù)的值;

(2),求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的任意一條切線l與橢圓都有兩個不同交點ABO是坐標原點)

1)求圓O半徑r的取值范圍;

2)是否存在圓O,使得恒成立?若存在,求出圓O的方程及的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線是曲線的一條切線

(1)求實數(shù)a的值;

(2)若對任意的x(0,),都有,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究發(fā)現(xiàn),在分鐘的一節(jié)課中,注力指標與學(xué)生聽課時間(單位:分鐘)之間的函數(shù)關(guān)系為.

(1)在上課期間的前分鐘內(nèi)(包括第分鐘),求注意力指標的最大值;

(2)根據(jù)專家研究,當(dāng)注意力指標大于時,學(xué)生的學(xué)習(xí)效果最佳,現(xiàn)有一節(jié)分鐘課,其核心內(nèi)容為連續(xù)的分鐘,問:教師是否能夠安排核心內(nèi)容的時間段,使得學(xué)生在核心內(nèi)容的這段時間內(nèi),學(xué)習(xí)效果均在最佳狀態(tài)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為實數(shù).

1)試確定函數(shù)的奇偶性;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

3)若函數(shù)在區(qū)間上有唯一的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天的時間與水深關(guān)系表:

時刻

200

500

800

1100

1400

1700

2000

2300

水深(米)

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經(jīng)長期觀測,這個港口的水深與時間的關(guān)系,可近似用函數(shù)ft)=Asinωt++b來描述.

1)根據(jù)以上數(shù)據(jù),求出函數(shù)ft)=Asinωt++b的表達式;

2)一條貨船的吃水深度(船底與水面的距離)為4.25米,安全條例規(guī)定至少要有2米的安全間隙(船底與洋底的距離),該船在一天內(nèi)(0002400)何時能進入港口然后離開港口?每次在港口能停留多久?

查看答案和解析>>

同步練習(xí)冊答案