【題目】已知函數(shù),集合.

(1)當時,解不等式;

(2)若,且,求實數(shù)的取值范圍;

(3)當時,若函數(shù)的定義域為,求函數(shù)的值域.

【答案】(1);(2);(3)當時,的值域為

時,的值域為;當時,的值域為

【解析】分析:(1)先根據(jù)一元二次方程解得ex>3,再解對數(shù)不等式得解集,(2)解一元二次不等式得集合A,再根據(jù),得log2f(x)≥1在0≤x≤1上有解,利用變量分離法得a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.最后根據(jù)二次函數(shù)性質(zhì)求最值得結(jié)果,(3)先轉(zhuǎn)化為對勾函數(shù),再根據(jù)拐點與定義區(qū)間位置關(guān)系,分類討論,結(jié)合單調(diào)性確定函數(shù)值域.

詳解:(1)當a=-3時,由f(x)>1得ex-3e-x-1>1,

所以e2x-2ex-3>0,即(ex-3) (ex+1)>0,

所以ex>3,故x>ln3,

所以不等式的解集為(ln3,+∞).

(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.

因為A∩B≠,所以log2f(x)≥1在0≤x≤1上有解,

即 f(x)≥2在0≤x≤1上有解,

即ex+ae-x-3≥0在0≤x≤1上有解,

所以a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.

由0≤x≤1得1≤ex≤e,

所以3ex-e2x=-(ex)2∈[3e-e2,],

所以a≥3e-e2.

(3)設(shè)t=ex,由(2)知1≤t≤e,

記g(t)=t+-1(1≤t≤e,a>1),則

t

(1,)

(,+∞)

g′(t)

0

g(t)

極小值

①當≥e時,即a≥e2時,

g(t)在1≤t≤e上遞減,所以g(e)≤g(t)≤g(1),即

所以f(x)的值域為.

②當1<<e時,即1<a<e2時,

g(t)min= g()=2-1,g(t)max=max{ g(1),g(e)} =max{ a,}.

1°若a,即e<a<e2時,g(t)max= g(1)= a;

所以f(x)的值域為;

2°若a,即1<a≤e時,g(t)max= g(e) =

所以f(x)的值域為

綜上所述,當1<a≤e時,f(x)的值域為;

當e<a<e2時,f(x)的值域為;

當a≥e2時,f(x)的值域為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某項“過關(guān)游戲”規(guī)則規(guī)定:在地關(guān)要拋擲顆骰子次,如果這次拋擲所出現(xiàn)的點數(shù)和大于,則算過關(guān).

(Ⅰ)此游戲最多能過__________關(guān).

(Ⅱ)連續(xù)通過第關(guān)、第關(guān)的概率是__________

(Ⅲ)若直接挑戰(zhàn)第關(guān),則通關(guān)的概率是__________

(Ⅳ)若直接挑戰(zhàn)第關(guān),則通關(guān)的概率是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,的中點,將沿折起,使得.

(1)若的中點,求證:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線x2=2py(p>0)上的點M(m,1)到焦點F的距離為2,
(1)求拋物線的方程;
(2)如圖,點E是拋物線上異于原點的點,拋物線在點E處的切線與x軸相交于點P,直線PF與拋物線相交于A,B兩點,求△EAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題函數(shù)上的奇函數(shù),命題函數(shù)的定義域和值域都是,其中.

(1)若命題為真命題,求實數(shù)的值;

(2)若“”為假命題,“”為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小陳同學進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.

(1)求小陳同學三次投籃至少命中一次的概率;

(2)記小陳同學三次投籃命中的次數(shù)為隨機變量,求的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的虛軸長為,兩條漸近線方程為.

(1)求雙曲線的方程;

(2)雙曲線上有兩個點,直線的斜率之積為,判別是否為定值,;

(3)經(jīng)過點的直線且與雙曲線有兩個交點,直線的傾斜角是,是否存在直線(其中)使得恒成立?(其中分別是點的距離)若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)在線段EF上是否存在一點P,使得平面PAB與平面ADE所成的銳二面角的余弦值為 .若存在,求出點P的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案