11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,則2x-2y+1的最大值是7.

分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=x-2y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.

解答 解:實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,作圖:
易知可行域?yàn)橐粋(gè)三角形,平移2x-2y+1=0,可知,當(dāng)直線經(jīng)過A時(shí),目標(biāo)函數(shù)取得最大值,
由$\left\{\begin{array}{l}{x=2}\\{x+y-1=0}\end{array}\right.$解得A(2,-1)時(shí),2x-2y+1取得最大值7,
故答案為:7.

點(diǎn)評 本小題是考查線性規(guī)劃問題,本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)$\frac{1}{1+ai}$(a∈R)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第一象限,則a的取值范圍是( 。
A.a<0B.0<a<1C.a>1D.a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的不等式ax2+(1-a)x-1>0
(1)當(dāng)a=2時(shí),求不等式的解集.
(2)當(dāng)a>-1時(shí).求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,則tan(2α+$\frac{π}{4}$)=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.運(yùn)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.5B.8C.10D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若f(ax+1)≤f(x-2)在$x∈[{\frac{1}{2}\;,\;1}]$上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,1]B.[-2,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|x2-3x+2<0},B={x|1<x<3},則(  )
A.A=BB.A?BC.A⊆BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某地區(qū)打的士收費(fèi)辦法如下:不超過2公里收7元,超過2公里時(shí),每車收燃油附加費(fèi)1元,并且超過的里程每公里收2.6元(其他因素不考慮),計(jì)算收費(fèi)標(biāo)準(zhǔn)的框圖如圖所示,則①處應(yīng)填( 。
A.y=2.0x+2.2B.y=0.6x+2.8C.y=2.6x+2.0D.y=2.6x+2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某校在一天的8節(jié)課中安排語文、數(shù)學(xué)、英語、物理、化學(xué)、選修課與2節(jié)自修課,其中第1節(jié)只能安排語文、數(shù)學(xué)、英語三門中的一門,第8節(jié)只能安排選修課或自修課,且選修課與自修課、自修課與自修課均不能相鄰,則所有不同的排法共有1296種.(結(jié)果用數(shù)字表示)

查看答案和解析>>

同步練習(xí)冊答案