若實數(shù)x,y滿足不等式組
y≤5
2x+y+3≥0
y-x-1≥0
,則z=|x|+2y的最大值是( 。
A、10B、11C、13D、14
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應用
分析:由題意作出其平面區(qū)域,|x|≤4,y≤5,且等號能同時成立,故取得最大值.
解答: 解:由題意作出其平面區(qū)域,

則當|x|=4,y=5時,z=|x|+2y有最大值,
即過點(-4,5)或(4,5)時,
最大值為14,
故選D.
點評:本題考查了簡單線性規(guī)劃,作圖要細致認真,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從0,1,2,3,4中任取3個不同的數(shù)分別記作拋物線y=ax2+bx+c,其中頂點在y軸上的拋物線共有
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若log2x=log4(x+2),則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形BCDE為矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=
1
2
BC=2,點F是線段AD的中點.
(1)求證:AB∥平面CEF;
(2)求幾何體ABCDE被平面CEF分成的上下兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0),g(x)=xlnx.
(1)若函數(shù)f(x)<0的解集為(1,3),且f(x)的最小值為-1,求函數(shù)f(x)的解析式;
(2)當a=1,c=2時,若函數(shù)φ(x)=f(x)+g(x)有零點,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a
-y2=1(a>0)的實軸長2,則該雙曲線的離心率為( 。
A、
2
2
B、
2
C、
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線:
y2
4
-x2=1的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點O為坐標原點,點M(2,-1),點N(x,y)滿足不等式組
x-2y+2≥0
x+y-2≥0
x≤4
,則
OM
ON
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A、
3
B、
3
3
C、
2
3
3
D、
4
3
3

查看答案和解析>>

同步練習冊答案