A. | 4$\sqrt{3}$sin(B+60°)+3 | B. | 4$\sqrt{3}$sin(B+30°)+3 | C. | 6sin(B+60°)+3 | D. | 6sin(B+30°)+3 |
分析 直接利用三角形的正弦定理和內(nèi)角和定理建立關(guān)系求解.(此題答案中保留角B,注意利用角B建立關(guān)系)
解答 解:由正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$
可得:b=sinB$•2\sqrt{3}$,c=sinc$•2\sqrt{3}$
∵A+B+C=180°,
∴c=90°+30°-B
那么:c=sinc$•2\sqrt{3}$=sin(90°+(30°-B)$•2\sqrt{3}$=cos(30°-B)=3cosB+$\sqrt{3}$sinB
△ABC的周長(zhǎng):a+b+c=3+$2\sqrt{3}$sinB+3cosB+$\sqrt{3}$sinB=3+6sin(B+30°)
故選D
點(diǎn)評(píng) 本題考查三角形的正弦定理和內(nèi)角和定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥2 | B. | a≤2 | C. | a≥1 | D. | a≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,$\frac{3}{4}$π) | B. | (3,$\frac{5}{4}$π) | C. | (3$\sqrt{2}$,$\frac{3}{4}$π) | D. | (3$\sqrt{2}$,$\frac{5}{4}$π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男 | 女 | 總計(jì) | |
愛好體育 | a | b | a+b |
愛好文娛 | c | d | c+d |
總計(jì) | a+c | b+d | a+b+c+d |
p(k2≥k) | 0.5 | 0.4 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com