【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線與橢圓相交于兩點(diǎn),使得 是橢圓的左焦點(diǎn)?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1) (2) 不存在斜率為﹣1直線l與橢圓C相交于M,N兩點(diǎn),使得|F1M|=|F1N|
【解析】試題分析:(1)由橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,列出方程組求出, ,由此能求出橢圓的標(biāo)準(zhǔn)方程;(2)假設(shè)存在斜率為直線: 與橢圓相交于, 兩點(diǎn),使得,聯(lián)立方程組,由此利用根的判別式、韋達(dá)定理、兩點(diǎn)間距離公式、直線斜率公式,結(jié)合已知條件推導(dǎo)出不存在斜率為直線與橢圓相交于, 兩點(diǎn),使得.
試題解析:(1)∵橢圓: 的右焦點(diǎn)為,點(diǎn)在橢圓上,∴,解得,∴橢圓的標(biāo)準(zhǔn)方程為.
(2)不存在斜率為直線與橢圓相交于, 兩點(diǎn),使得,理由如下:假設(shè)存在斜率為直線: 與橢圓相交于, 兩點(diǎn),使得,聯(lián)立,消除,得: , ,解得,(*), , ,∵, , , ,∴,整理,得,∴,∴直線的斜率: ,解得,不滿足(*)式,∴不存在斜率為直線與橢圓相交于, 兩點(diǎn),使得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+x).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=g(x),當(dāng)x≥0時(shí),f(x)≤ ,求t的最小值;
(2)當(dāng)n∈N*時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,若函數(shù)y=f(x)﹣kx恒有一個(gè)零點(diǎn),則k的取值范圍為( )
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,直線與拋物線C交于A,B兩點(diǎn).
(1)若直線過拋物線C的焦點(diǎn),求.
(2)已知拋物線C上存在關(guān)于直線對稱的相異兩點(diǎn)M和N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 平面, .
(1)求證: 平面;
(2)求證: 平面;
(3)若是的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點(diǎn),且線段MN的中點(diǎn)為(﹣1, ).過橢圓E內(nèi)一點(diǎn)P(1, )的兩條直線分別與橢圓交于點(diǎn)A、C和B、D,且滿足 ,其中λ為實(shí)數(shù).當(dāng)直線AP平行于x軸時(shí),對應(yīng)的λ= .
(1)求橢圓E的方程;
(2)當(dāng)λ變化時(shí),kAB是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象在點(diǎn)(0,0)處有相同的切線.
(Ⅰ)求a的值;
(Ⅱ)設(shè),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺(tái)對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com