對于函數(shù)若存在,使得成立,則稱為的不動點.
已知
(1)當(dāng)時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關(guān)于直線對稱,求的最小值.
(1)-1和3;(2);(3).
解析試題分析:(1)根據(jù)不動點的定義,本題實質(zhì)是求方程即的解;(2)函數(shù)恒有兩個相異的不動點即方程恒有兩個不等實根,對應(yīng)的判別式恒成立;(3)、兩點關(guān)于直線對稱,可用的結(jié)論有:①直線AB與直線垂直,即斜率互為負倒數(shù);②線段AB的中點在直線上.注意不動點A、B所在直線AB的斜率為1.
試題解析: (1)時,,
函數(shù)的不動點為-1和3;
(2)即有兩個不等實根,轉(zhuǎn)化為有兩個不等實根,需有判別式大于0恒成立
即,
的取值范圍為;
(3)設(shè),則,
的中點的坐標為,即
兩點關(guān)于直線對稱,
又因為在直線上, ,
的中點在直線上,
利用基本不等式可得當(dāng)且僅當(dāng)時,b的最小值為.
考點:(1)解方程;(2)二次方程有兩個不等實根的條件;(3)直線的對稱點問題及最小值問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量與的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/e/gwqi81.png" style="vertical-align:middle;" />時所經(jīng)歷的時間).()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
集合A是由適合以下性質(zhì)的函數(shù)構(gòu)成的:對于定義域內(nèi)任意兩個不相等的實數(shù),都有.
(1)試判斷=及是否在集合A中,并說明理由;
(2)設(shè)ÎA且定義域為(0,+¥),值域為(0,1),,試寫出一個滿足以上條件的函數(shù)的解析式,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,為其反函數(shù).
(Ⅰ)說明函數(shù)與圖象的關(guān)系(只寫出結(jié)論即可);
(Ⅱ)證明的圖象恒在的圖象的上方;
(Ⅲ)設(shè)直線與、均相切,切點分別為()、(),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費,根據(jù)多年的統(tǒng)計經(jīng)驗,預(yù)計當(dāng)每件產(chǎn)品的售價為x元時,產(chǎn)品一年的銷售量為(e為自然對數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價為40元時,該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價部門核定每件產(chǎn)品的售價x最低不低于35元,最高不超過41元.
(Ⅰ)求分公司經(jīng)營該產(chǎn)品一年的利潤L(x)萬元與每件產(chǎn)品的售價x元的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價為多少元時,該產(chǎn)品一年的利潤L(x)最大,并求出L(x)的最大值.
參考公式:為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求證不論為何實數(shù),總是增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若函數(shù)在上至少有一個零點,求的取值范圍;
(Ⅱ)若函數(shù)在上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù),.
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com