【題目】下列結(jié)論:

“直線l與平面平行”是“直線l在平面外”的充分不必要條件;

p,則,

命題“設(shè)a,,若,則”為真命題;

”是“函數(shù)上單調(diào)遞增”的充要條件.

其中所有正確結(jié)論的序號(hào)為______

【答案】

【解析】

由線面的位置關(guān)系,結(jié)合充分必要條件的定義可判斷;由特稱命題的否定為全稱命題,可判斷;由原命題和逆否命題互為等價(jià)命題,可判斷;由導(dǎo)數(shù)大于等于0恒成立,結(jié)合充分必要條件的定義,可判斷

“直線l與平面平行”可推得“直線l在平面外”,反之,不成立,直線l可能與平面相交,故“直線l與平面平行”是“直線l在平面外”的充分不必要條件,故正確;

p,,則,,故錯(cuò)誤;

命題“設(shè)a,若,則”的逆否命題為

“設(shè)a,,若,則”,即為真命題,故正確;

函數(shù)上單調(diào)遞增,可得恒成立,即有的最小值,可得,“”是“函數(shù)上單調(diào)遞增”的充分不必要條件,故錯(cuò)誤.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù).

1 列舉出所有可能的結(jié)果,并求兩點(diǎn)數(shù)之和為5的概率;

2 求以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)在圓 的內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面邊上一點(diǎn),.

(1)證明:平面平面.

(2)若,試問(wèn):是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.

1)求圓O的方程;

2)圓Ox軸交于E,F兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得DE,DO,DF成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1nN*),數(shù)列{bn}滿足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}{bn}的通項(xiàng)公式;

2)若cn=-1n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;

3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對(duì)任意的nN*,都有DnnSn-a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份(年)

維護(hù)費(fèi)(萬(wàn)元)

(I)從這年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有年多于萬(wàn)元的概率;

(II)求關(guān)于的線性回歸方程;若該設(shè)備的價(jià)格是每臺(tái)萬(wàn)元,你認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,還是應(yīng)該使用滿八年換一次設(shè)備?并說(shuō)明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)若處取得極值,求過(guò)點(diǎn)且與處的切線平行的直線方程;

(II)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),且時(shí),總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線上一點(diǎn),的焦點(diǎn).

(1)若,上的兩點(diǎn),證明:,依次成等比數(shù)列.

(2)過(guò)作兩條互相垂直的直線與的另一個(gè)交點(diǎn)分別交于,(的上方),求向量軸正方向上的投影的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案