【題目】已知函數(shù).
(I)若在處取得極值,求過點且與在處的切線平行的直線方程;
(II)當函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.
【答案】(Ⅰ)
【解析】
(Ⅰ)求導(dǎo)函數(shù),利用極值點必為f′(x)=0的根,求出a的值,可得斜率,利用點斜式寫出方程即可.
(II)由題意得u(x)=2x2﹣8x+a=0在(0,+∞)上有兩個不等正根,可得a的范圍,利用根與系數(shù)的關(guān)系將中的a,都用表示,構(gòu)造函數(shù),對m分類討論,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
(Ⅰ)由已知知,,點,所以所求直線方程為.
(Ⅱ)定義域為,令,由有兩個極值點得有兩個不等的正根,所以,
所以由知
不等式等價于
,即
時,時
令,
當時,,所以在上單調(diào)遞增,又,
所以時,;時,
所以,不等式不成立
當時,令
(i)方程的即時所以在上單調(diào)遞減,又,
當時,,不等式成立
當時,,不等式成立
所以時不等式成立
(ii)當即時,對稱軸開口向下且,令則在上單調(diào)遞增,又, ,時不等式不成立,綜上所述,則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,過坐標原點的直線交于,兩點,點在第一象限,軸,垂足為.連結(jié)并延長交于點.
(1)設(shè)到直線的距離為,求的取值范圍;
(2)求面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:
“直線l與平面平行”是“直線l在平面外”的充分不必要條件;
若p:,,則:,;
命題“設(shè)a,,若,則或”為真命題;
“”是“函數(shù)在上單調(diào)遞增”的充要條件.
其中所有正確結(jié)論的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,拋物線焦點均在x軸上,的中心和頂點均在原點O,從每條曲線上各取兩個點,將其坐標記錄于表中,則的左焦點到的準線之間的距離為( )
3 | -2 | 4 | ||
0 | -4 |
A.B.C.1D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),單調(diào)遞增,,若對任意,存在,使得成立,則稱是在上的“追逐函數(shù)”.若,則下列四個命題:①是在上的“追逐函數(shù)”;②若是在上的“追逐函數(shù)”,則;③是在上的“追逐函數(shù)”;④當時,存在,使得是在上的“追逐函數(shù)”.其中正確命題的個數(shù)為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓交于不同的兩點.在軸上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為正方形,分別為的中點,以為折痕把折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯誤的是( )
A. 該超市2018年的12個月中的7月份的收益最高
B. 該超市2018年的12個月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com