已知(x-
2
2
n=a0xn+a1xn-1+a2xn-2+…an-1x+an,若a2=14,則an-3=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:依題意,可得a2=
C
2
n
(-
2
2
)2
=
1
2
C
2
n
=14,從而可求得n,繼而可求得an-3的值.
解答: 解:∵a2=
C
2
n
(-
2
2
)2
=
1
2
C
2
n
=14,
n(n-1)
2
=28,
解得:n=8或n=-7(舍),
∴n=8.
∴an-3=a8-3=a5=
C
5
8
(-
2
2
)
5
=-
2
8
•56=-7
2
,
故答案為:-7
2
點(diǎn)評(píng):本題考查二項(xiàng)式系數(shù)的性質(zhì),求得n=8是關(guān)鍵,考查運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓錐的側(cè)面積是底面積的3倍,則其母線與底面所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)于任意的x∈R,f(1+x)-f(1-x)=0恒成立,當(dāng)x∈[0,1]時(shí),f(x)=2x,若方程f(x)=ax恰好有5個(gè)不同的解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)為an=(-1)n•n•sin
2
+1前n項(xiàng)和為Sn,S100=( 。
A、50B、100
C、-150D、150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-2與橢圓x2+4y2=80相交于不同的兩點(diǎn)P、Q,若PQ的中點(diǎn)橫坐標(biāo)為2,則直線的斜率等于( 。
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(1,k),
AC
=(4,2),|
AB
|≤5,k∈Z,則△ABC是鈍角三角形的概率為( 。
A、
1
9
B、
4
9
C、
5
9
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定y軸上的一點(diǎn)A(0,a)(a>1),對(duì)于曲線y=|
x2
2
-1|上的動(dòng)點(diǎn)M(x,y)
(1)試求A,M兩點(diǎn)之間距離|AM|(用x表示);
(2)求|AM|的最小值(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex•ln x;                   
(2)y=x(x2+
1
x
+
1
x3

(3)y=x-sin 
x
2
cos 
x
2
;             
(4)y=(
x
+1)(
1
x
-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(2k+1)x+b在實(shí)數(shù)集上是減函數(shù),則( 。
A、k>-
1
2
B、k<-
1
2
C、b>0
D、b<0

查看答案和解析>>

同步練習(xí)冊(cè)答案