18.設(shè)函數(shù)f(x)=ex-x.
(1)若函數(shù)F(x)=f(x)-ax2-1的導(dǎo)函數(shù)F′(x)在[0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)求證:f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{n+1}$)>n+$\frac{n}{4(n+2)}$,n∈N*

分析 (1)求導(dǎo)數(shù),導(dǎo)函數(shù)F′(x)在[0,+∞)上是增函數(shù),可得H'(x)=ex-2a≥0,即可求實數(shù)a的最大值;
(2)F(x)在[0,+∞)上是增函數(shù),此時F(0)=0,F(xiàn)(x)≥0,即f(x)≥$\frac{1}{2}$x 2+1,x∈[0,+∞),可得f($\frac{1}{2}$)≥$\frac{1}{2}$($\frac{1}{2}$) 2+1,f($\frac{1}{3}$)≥$\frac{1}{2}$($\frac{1}{3}$) 2+1,…f($\frac{1}{n+1}$)≥$\frac{1}{2}$( $\frac{1}{n+1}$) 2+1,各式相加,即可證明結(jié)論.

解答 (1)解:F'(x)=f'(x)-2ax=(ex-1)-2ax,
令H(x)=F'(x),
由題知H'(x)=ex-2a≥0,
所以a≤$\frac{1}{2}$ex,x∈[0,+∞),
所以a≤$\frac{1}{2}$;
(2)證明:由(1)知當(dāng)a=$\frac{1}{2}$時F'(x)在[0,+∞)上是增函數(shù),
故F'(x)≥F'(0)=0,
所以F(x)在[0,+∞)上是增函數(shù),
此時F(0)=0,F(xiàn)(x)≥0,
即f(x)≥$\frac{1}{2}$x 2+1,x∈[0,+∞),
即有f($\frac{1}{2}$)≥$\frac{1}{2}$($\frac{1}{2}$) 2+1,f($\frac{1}{3}$)≥$\frac{1}{2}$($\frac{1}{3}$) 2+1,
…f($\frac{1}{n+1}$)≥$\frac{1}{2}$( $\frac{1}{n+1}$) 2+1,
各式相加有f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{n+1}$)
≥$\frac{1}{2}$[($\frac{1}{2}$)2+($\frac{1}{3}$)2+…+($\frac{1}{n+1}$)2]+n
>$\frac{1}{2}$[$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{(n+1)(n+2)}$]+n
=$\frac{1}{2}$[$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$]+n
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{n+2}$)+n=n+$\frac{n}{4(n+2)}$.

點評 本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x-(x+1)ln(x+1).
(1)求f(x)的極值;
(2)當(dāng)a>b>0時,試證明:(1+a)b<(1+b)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a,b,c分別是三外內(nèi)角A、B、C的對邊,a=1,b=$\sqrt{2}$,A=30°,則B=( 。
A.$\frac{π}{3}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.公比不為1的等比數(shù)列{an}滿足a5a6+a4a7=8,若a2•am=4,則m的值為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,要測量河對岸A、B兩點之間的距離,選取相距$\sqrt{3}$km的C、D兩點,并測得∠ACB=75°.∠BCD=∠ADB=45°,∠ADC=30°,請利用所測數(shù)據(jù)計算A、B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個袋中裝有大小相同的黑球和白球共8個,從中任取2個球,記隨機變量X為取出2個球中白球的個數(shù),已知P(X=2)=$\frac{3}{28}$.
(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某班周四上午有4節(jié)課,下午有2節(jié)課,安排語文、數(shù)學(xué)、英語、物理、體育、音樂6門課,若要求體育不排在上午第一、二節(jié),并且體育課與音樂課不相鄰,(上午第四節(jié)與下午第一節(jié)理解為相鄰),則不同的排法總數(shù)為(  )
A.312B.288C.480D.456

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\sqrt{lnx-1}$+$\sqrt{x(3-x)}$定義域為[e,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{a}{{a{{sin}^2}θ+{{cos}^2}θ}}({θ∈R})$,且曲線C在極坐標(biāo)系中過點(2,π).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線$l:\left\{\begin{array}{l}x=-2+2\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.$(t為參數(shù))與曲線C相交于A,B兩點,直線m過線段AB的中點,且傾斜角是直線l的傾斜角的2倍,求m的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案