精英家教網 > 高中數學 > 題目詳情

【題目】某商場營銷人員進行某商品的市場營銷調查時發(fā)現(xiàn),每回饋消費者一定的點數,該商品每天的銷量就會發(fā)生一定的變化,經過試點統(tǒng)計得到以下表:

反饋點數t

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)經分析發(fā)現(xiàn),可用線性回歸模型擬合當地該商品銷量(千件)與返還點數之間的相關關系.試預測若返回6個點時該商品每天的銷量;

(Ⅱ)若節(jié)日期間營銷部對商品進行新一輪調整.已知某地擬購買該商品的消費群體十分龐大,經營銷調研機構對其中的200名消費者的返點數額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:

返還點數預期值區(qū)間

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

頻數

20

60

60

30

20

10

將對返點點數的心理預期值在的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.

【答案】(Ⅰ) 2千件(Ⅱ)0.8

【解析】

(Ⅰ)求出樣本中心點,再代入回歸方程得解,把t=6代入回歸方程預測若返回6個點時該商品每天的銷量;(Ⅱ)利用古典概型的概率公式求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.

(Ⅰ)易知,

所以1.04=+0.08, 所以.

則y關于t的線性回歸方程為,

時,,即返回6個點時該商品每天銷量約為2千件.

(Ⅱ)設從“欲望膨脹型”消費者中抽取x人,從“欲望緊縮型”消費者中抽取y人,

由分層抽樣的定義可知,解得

在抽取的6人中,2名“欲望膨脹型”消費者分別記為,4名“欲望緊縮型”消費者分別記為,則所有的抽樣情況共20種,其中至少有1名“欲望膨脹型”消費者的情況有16種。記事件A為“抽出的3人中至少有1名‘欲望膨脹型’消費者”,則.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數據中分別隨機抽取100個,并按[ 0,10],(10,20],(20,30],(3040],(40,50]分組,得到頻率分布直方圖如下:

假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.

1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較的大;(只需寫出結論)

2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;

3)設表示在未來3天內甲種酸奶的日銷售量不高于20箱的天數,以日銷售量落入各組的頻率作為概率,求的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線方程為焦點,為拋物線準線上一點,為線段與拋物線的交點,定義:.

(1)當時,求;

(2)證明:存在常數,使得.

(3)為拋物線準線上三點,且,判斷的關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】獎飯店推出甲.乙兩種新菜品,為了了解兩種菜品的受歡迎程度,現(xiàn)統(tǒng)計一周內兩種菜品每天的銷售量,得到下面的莖葉圖.下列說法中,不正確的是(

A.甲菜品銷售量的眾數比乙菜品銷售量的眾數小

B.甲菜品銷售量的中位數比乙菜品銷售量的中位數小

C.甲菜品銷售量的平均值比乙菜品銷售量的平均值大

D.甲菜品銷售量的方差比乙菜品銷售量的方差大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是等差數列,,且,成等比數列.

1)求的通項公式;

2)求的前項和的最小值;

3)若是等差數列,的公差不相等,且,問:中除第5項外,還有序號相同且數值相等的項嗎?(直接寫出結論即可)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數時,的最小值等于____;若對于定義域內的任意恒成立,則實數的取值范圍是____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正方形和矩形所在的平面互相垂直,,點在線段上.

(Ⅰ)若的中點,求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)證明:存在點,使得平面,并求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,數列A,,中的項均為不大于的正整數.表示,的個數(.定義變換,將數列變成數列,其中.

1)若,對數列,寫出的值;

2)已知對任意的),存在中的項,使得.求證:)的充分必要條件為);

3)若,對于數列,,令,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線,點,點是平面直角坐標系內的動點,且點到直線的距離是點到點的距離的2.記動點的軌跡為曲線.

1)求曲線的方程;

2)過點的直線與曲線交于、兩點,若是坐標系原點)的面積為,求直線的方程;

3)若(2)中過點的直線是傾斜角不為0的任意直線,仍記與曲線的交點為,設點為線段的中點,直線與直線交于點,求的大小.

查看答案和解析>>

同步練習冊答案