13.已知直線l過點(diǎn)P(0,-4),且傾斜角為$\frac{π}{4}$,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點(diǎn),求|PA|•|PB|及弦長|AB|的值.

分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{π}{4}}\\{y=-4+tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),化簡即可得出.圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式即可得出圓C的直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程代入圓C的方程,化簡得${t}^{2}-6\sqrt{2}t$+16=0,利用根與系數(shù)的關(guān)系及其:|PA|•|PB|=|t1t2|,弦長|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.

解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcos\frac{π}{4}}\\{y=-4+tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),即$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,∴圓C的直角坐標(biāo)方程為:x2+y2=4x.
(2)把直線l的參數(shù)方程代入圓C的方程,化簡得${t}^{2}-6\sqrt{2}t$+16=0,
△>0,∴t1t2=16,t1+t2=$6\sqrt{2}$.
∴|PA|•|PB|=|t1t2|=16,
弦長|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{72-64}$=2$\sqrt{2}$.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化、直線與圓相交弦長公式、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A,B為n階方陣,滿足A+B=AB.若B=$(\begin{array}{l}{1}&{-3}&{0}\\{2}&{1}&{0}\\{0}&{0}&{2}\end{array})$,求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=lg(x+k),若其反函數(shù)f-1(x)的圖象經(jīng)過點(diǎn)(1,4),則實(shí)數(shù)k=(  )
A.1B.4C.6D.9999

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=loga|x|(a>0,且a≠1),且f(x2+4x+8)>f(-π),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.直平行六面體各棱的長都等于5,底面兩條對角線的平方差為50,求這個(gè)平行六面體的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy系中,已知直線l:2x+y+4=0,圓C:x2+y2+2x-2by+1=0(b為正實(shí)數(shù))
(1)若直線l與圓C交于A,B兩點(diǎn),且AB=$\frac{4\sqrt{5}}{5}$,求圓C的方程;
(2)作直線CD垂直于直線l,垂足為D,以D為圓心,以DC為半徑作圓D,記圓C的周長為l(b),圓C與圓D的面積之和g(b),設(shè)f(b)=$\frac{g(b)}{l(b)}$,求函數(shù)f(b)的最小值及對應(yīng)的b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(diǎn)M的直角坐標(biāo)是(3,$\sqrt{3}$),則點(diǎn)M的極坐標(biāo)可能為( 。
A.(2$\sqrt{3}$,$\frac{5π}{6}$)B.(2$\sqrt{3}$,$\frac{π}{6}$)C.(2$\sqrt{3}$,-$\frac{π}{6}$)D.(2$\sqrt{3}$,-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=xex-ae2x(a∈R)
(I)當(dāng)a≥$\frac{1}{e}$時(shí),求證:f(x)≤0.
(II)若函數(shù)f(x)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=a(x-x1)(x-x2)(x-x3)(其中x1>x2>x3,a>0),g(x)=4x+sin(3x+1).若函數(shù)f(x)的兩個(gè)極值點(diǎn)為α、β(β<α),設(shè)λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,則( 。
A.g(β)<g(μ)<g(α)<g(λ)B.g(μ)<g(β)<g(λ)<g(α)C.g(α)<g(λ)<g(μ)<g(β)D.g(β)<g(μ)<g(λ)<g(α)

查看答案和解析>>

同步練習(xí)冊答案