【題目】如圖,在四棱錐中,底面,底面是矩形,,是的中點.
(1)求證:平面;
(2)已知點是的中點,點是上一點,且平面平面.若,求點到平面的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)試證明函數(shù)是偶函數(shù);
(2)畫出的圖象;(要求先用鉛筆畫出草圖,再用黑色簽字筆描摹,否則不給分)
(3)請根據(jù)圖象指出函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(不必證明)
(4)當(dāng)實數(shù)取不同的值時,討論關(guān)于的方程的實根的個數(shù);(不必求出方程的解)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(π﹣ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加市高中籃球比賽,某中學(xué)決定從四個籃球較強(qiáng)的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強(qiáng)的班級籃球隊員人數(shù)如下表:
班級 | 高三(7)班 | 高三(17)班 | 高二(31)班 | 高二(32)班 |
人數(shù) | 12 | 6 | 9 | 9 |
(1)現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應(yīng)分別從這四個班抽出的隊員人數(shù);
(2)該中學(xué)籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當(dāng)時,圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是 .(填序號)
①當(dāng)0<CQ<時,S為四邊形;
②當(dāng)CQ=時,S為等腰梯形;
③當(dāng)CQ=時,S與C1D1的交點R滿足C1R=;
④當(dāng)<CQ<1時,S為六邊形;
⑤當(dāng)CQ=1時,S的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過點,且被圓截得的弦長為是,求直線的方程;
(2)設(shè)為平面上的點,滿足:存在過點的無窮多對互相垂直的直線和,它們分別與圓和圓相交,且直線與被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com