【題目】已知橢圓()的焦點分別為,,離心率,過左焦點的直線與橢圓交于,兩點,,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線與橢圓有兩個不同的交點,,且點在點,之間,試求和面積之比的取值范圍(其中為坐標(biāo)原點).
【答案】(1);(2).
【解析】試題分析:(1)先根據(jù)正弦定理將角化為邊,再根據(jù)橢圓定義得,求得,根據(jù)離心率求得,,(2)兩面積之比等于A,B兩點縱坐標(biāo)之比,所以先設(shè)的方程為,與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理得,令,消元可得,即. 根據(jù)判別式大于零得.解不等式可得取值范圍
試題解析:(Ⅰ)在中,由正弦定理得,由橢圓定義得,所以,故,又,所以,,所以橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)依題意知直線的斜率存在且不為0,設(shè)的方程為,與橢圓方程聯(lián)立,
消去x整理得,
由,解得.
設(shè),則
令,則,且.
將代人①②得,消去得,
即.
由,得,所以且,
解得或.
又,∴,故和面積之比的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果直線與橢圓只有一個交點,稱該直線為橢圓的“切線”.已知橢圓,點是橢圓上的任意一點,直線過點且是橢圓的“切線”.
(1)證明:過橢圓上的點的“切線”方程是;
(2)設(shè),是橢圓長軸上的兩個端點,點不在坐標(biāo)軸上,直線,分別交軸于點,,過的橢圓的“切線”交軸于點,證明:點是線段的中點;
(3)點不在軸上,記橢圓的兩個焦點分別為和,判斷過的橢圓的“切線”與直線,所成夾角是否相等?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】玉山一中籃球體育測試要求學(xué)生完成“立定投籃”和“三步上籃”兩項測試,“立定投籃”和“三步上籃”各有2次投籃機會,先進(jìn)行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節(jié)約時間,每項測試只需且必須投中一次即為合格.小華同學(xué)“立定投籃”和“三步上籃”的命中率均為.假設(shè)小華不放棄任何一次投籃機會且每次投籃是否命中相互獨立.
(1)求小華同學(xué)兩項測試均合格的概率;
(2)設(shè)測試過程中小華投籃次數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值
為,當(dāng)時,產(chǎn)品為一級品;當(dāng)時,產(chǎn)品為二級品,當(dāng)時,產(chǎn)品為三級品,現(xiàn)用兩種新配方(分別稱為配方和配方)做實驗,各生產(chǎn)了100件這種產(chǎn)品,
并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗結(jié)果:(以下均視頻率為概率)
配方的頻數(shù)分配表
指標(biāo)值分組 | ||||
頻數(shù) | 10 | 30 | 40 | 20 |
配方的頻數(shù)分配表
指標(biāo)值分組 |
| ||||
頻數(shù) | 5 | 10 | 15 | 40 | 30 |
(Ⅰ)若從配方產(chǎn)品中有放回地隨機抽取3件,記“抽出的配方產(chǎn)品中至少1件二級品”為事件,求事件發(fā)生的概率;
(Ⅱ)若兩種新產(chǎn)品的利潤率與質(zhì)量指標(biāo)滿足如下關(guān)系:其中,從長期來看,投資哪種配方的產(chǎn)品平均利潤率較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當(dāng)x≥0時,,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)且不恒為零,對滿足,且在上單調(diào)遞增.
(1)求,的值,并判斷函數(shù)的奇偶性;
(2)求的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com