17.某同學(xué)在高三學(xué)年的五次階段性考試中,數(shù)學(xué)成績依次為110,114,121,119,126,則這組數(shù)據(jù)的方差是
30.8.

分析 根據(jù)平均數(shù)與方差的計算公式,計算即可.

解答 解:五次考試的數(shù)學(xué)成績分別是110,114,121,119,126,
∴它們的平均數(shù)是$\overline{x}$=$\frac{1}{5}$×(110+114+121+119+126)=118,
方差是s2=$\frac{1}{5}$[(110-118)2+(114-118)2+(121-118)2+(119-118)2+(126-118)2]=30.8.
故答案為:30.8.

點評 本題考查平均數(shù)與方差的計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z1、z2滿足|z1|=|z2|=1,z1-z2=$\frac{2-4i}{2+i}$,則z1•z2=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(-4,-2),則下列說法中正確的個數(shù)是( 。
①$\overrightarrow{a}$⊥$\overrightarrow$;②向量$\overrightarrow{a}$與向量$\overrightarrow{c}$的夾角為90°;③對同一平面內(nèi)的任意向量$\overrightarrowgm4kyye$,都存在一對實數(shù)k1,k2,使得$\overrightarrowmgs4m62$=k1$\overrightarrow$+k2$\overrightarrow{c}$.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題p:△ABC中,若A>B,則cosA>cosB,則下列命題為真命題的是(  )
A.p的逆命題B.p的否命題C.p的逆否命題D.p的否定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的s=(  )
A.5B.20C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知拋物線E:y2=2px(p>0)與圓O:x2+y2=8相交于A,B兩點,且點A的橫坐標(biāo)為2.過劣弧AB上動點P(x0,y0)作圓O的切線交拋物線E于C,D兩點,分別以C,D為切點作拋物線E的切線l1,l2,l1與l2相交于點M.
(1)求拋物線E的方程;
(2)求點M到直線CD距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓C:x2+y2-4x+m=0與圓${({x-3})^2}+{({y+2\sqrt{2}})^2}=4$外切,點P是圓C一動點,則點P到直線3x-4y+4=0的距離的最大值為(  )
A.$2\sqrt{2}$B.3C.4D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若存在正實數(shù)m,使得關(guān)于x的方程x+a(2x+2m-4ex)[1n(x+m)-lnx]=0有兩個不同的根,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.(0,$\frac{1}{2e}$)C.(-∞,0)∪($\frac{1}{2e}$,+∞)D.($\frac{1}{2e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|y=lg(x+1)},B={x||x|<2},則A∩B=(  )
A.(-2,0)B.(0,2)C.(-1,2)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊答案