已知是雙曲線的兩個焦點,Q是雙曲線上任一點(不是頂點),從某一焦點引的平分線的垂線,垂足為P,則點P的軌跡是

A.直線B.圓C.橢圓D.雙曲線

B

解析試題分析:利用已知條件判斷出△AQF1為等腰三角形,利用雙曲線的定義及等量代換得到AF2=2a,利用三角形的中位線得到OP=a,利用圓的定義判斷出點的軌跡.解:設O為F1F2的中點,延長F1P交QF2于A,連接OP,據(jù)題意知△AQF1為等腰三角形,所以QF1=QA,∵|QF1-QF2|=2a,∴∵|QA-QF2|=2a,即AF2=2a,∵OP為△F1F2A的中位線,∴OP=a,故點P的軌跡為以O為圓心,以a為半徑的圓,故選B
考點:雙曲線
點評:本題考查雙曲線的定義、原點定義及等量代換的數(shù)學方法、三角形的中位線性質(zhì)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知過拋物線y2 =2px(p>0)的焦點F的直線x-my+m=0與拋物線交于A,B兩點,且△OAB(O為坐標原點)的面積為2,則m6+ m4的值為(   )

A.1 B. 2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過雙曲線的一個焦點作垂直于實軸的弦 ,是另一焦點,若∠,則雙曲線的離心率等于(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過橢圓左焦點F且傾斜角為的直線交橢圓于A、B兩點,若,則橢圓的離心率為(    )
A.              B.              C.                D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

與拋物線相切傾斜角為的直線L與x軸和y軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為
A.4                B.2        C.2            D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在拋物線上,橫坐標為的點到焦點的距離為,則的值為(   )

A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若點O和點F(﹣2, 0)分別是雙曲線的中心和左焦點,點P為雙曲線右支上的任意一點,則的取值范圍為

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設P是雙曲線=1(a>0 ,b>0)上的點,F(xiàn)1、F2是焦點,雙曲線的離心 率是,且∠F1PF2=90°,△F1PF2面積是9,則a + b=(   )

A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若拋物線C1:(p >0)的焦點F恰好是雙曲線C2:(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

同步練習冊答案