【題目】已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點.
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點.將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點P,則三棱錐PDCE的外接球的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,拋物線的準線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)如圖,點分別是橢圓的左頂點、左焦點直線與橢圓交于不同的兩點(都在軸上方).且.證明:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】目前我國城市的空氣污染越來越嚴重,空氣質(zhì)量指數(shù)一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現(xiàn)調(diào)查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:
室外工作 | 室內(nèi)工作 | 合計 | |
有呼吸系統(tǒng)疾病 | 150 | ||
無呼吸系統(tǒng)疾病 | 100 | ||
合計 | 200 |
(Ⅰ)請把列聯(lián)表補充完整;
(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;
(Ⅲ)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.
參考公式與臨界表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)若,數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com