【題目】若集合具有以下性質(zhì):(1;(2)若,則,且當(dāng)時(shí),,則稱集合閉集”.

1)試判斷集合是否為閉集,請(qǐng)說(shuō)明理由;

2)設(shè)集合閉集,求證:若,,則

3)若集合是一個(gè)閉集,試判斷命題,,則的真假,并說(shuō)明理由.

【答案】1)否,理由見(jiàn)詳解;(2)證明見(jiàn)詳解;(3)真命題,理由見(jiàn)詳解

【解析】

1)利用閉集的定義判斷;
2)利用閉集的定義證明;
3)利用閉集的定義,先說(shuō)明中均不含0,1時(shí),,再說(shuō)明,進(jìn)而得出,,從而有,可得到,,即得出.

解:(1,

∴集合不是閉集
2)證明:∵集合閉集,
,

3)若集合是一個(gè)閉集”,任取,

中有0或1時(shí),顯然;

中均不含0,1,由定義可知:,

,

由(2)知,,即.同理可得,
,則顯然
,則,

,
,
故命題為真命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,,平面平面.

(1)求證:

(2)若,直線與平面所成角為,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,a4=10,且a3、a6、a10成等比數(shù)列.

1)求{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

是否存在,使得,按照某種順序成等差數(shù)列?若存在,請(qǐng)確定的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由;

求實(shí)數(shù)與正整數(shù),使得內(nèi)恰有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)開(kāi)發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量(萬(wàn)件)與廣告費(fèi)(萬(wàn)元)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬(wàn)元,每生產(chǎn)萬(wàn)件此產(chǎn)品仍需要投入萬(wàn)元,若年銷售額為年生產(chǎn)成本的年廣告費(fèi)的之和,而當(dāng)年產(chǎn)銷量相等:

1)試將年利潤(rùn)(萬(wàn)元)表示為年廣告費(fèi)(萬(wàn)元)的函數(shù);

2)求當(dāng)年廣告費(fèi)投入多少萬(wàn)元時(shí),企業(yè)利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)向圓引兩條切線,,切點(diǎn)為,,若點(diǎn)的坐標(biāo)為,則直線的方程為____________;若為直線上一動(dòng)點(diǎn),則直線經(jīng)過(guò)定點(diǎn)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過(guò)種植紫甘薯來(lái)提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2017年種植的一批試驗(yàn)紫甘薯在溫度升高時(shí)6組死亡的株數(shù):

經(jīng)計(jì)算: , , , , , ,其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對(duì)于一組數(shù)據(jù) ,……, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影,且.

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

2)求過(guò)點(diǎn)(1,0),傾斜角為的直線被所截線段的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案