【題目】如圖,三棱柱中,,平面平面.

(1)求證:;

(2)若,直線與平面所成角為,的中點(diǎn),求二面角的余弦值.

【答案】(1)見解析(2)

【解析】

(1)過點(diǎn)CCOAA1,則CO⊥平面AA1B1BCOOB,推導(dǎo)出Rt△AOC≌Rt△BOC,從而AA1OB,再由AA1CO,得AA1⊥平面BOC,由此能證明AA1BC

(2)以O為坐標(biāo)原點(diǎn),OA,OBOC所在直線分別為x,yz軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B1A1DC1的余弦值.

(1)過點(diǎn),垂足為

因?yàn)槠矫?/span>平面,

所以平面,故,

又因?yàn)?/span>,,,

所以,故,

因?yàn)?/span>,所以,

又因?yàn)?/span>,所以平面,故.

(2)以為坐標(biāo)原點(diǎn),,,所在直線為,軸,建立空間直角坐標(biāo)系

因?yàn)?/span>平面,

所以是直線與平面所成角,

,

所以,

,,

設(shè)平面的法向量為,則

,所以

,得

因?yàn)?/span>平面,

所以為平面的一條法向量,

,

,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)p的取值范圍;

2)問是否存在常數(shù),使得當(dāng)時(shí),的值域?yàn)閰^(qū)間D,且D的長度為.

(注:區(qū)間 的長度為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶,得到用戶對(duì)產(chǎn)品的滿意度評(píng)分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評(píng)分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

低于70

70分到89

不低于90

滿意度等級(jí)

不滿意

滿意

非常滿意

記事件C“A地區(qū)用戶的滿意度等級(jí)高于B地區(qū)用戶的滿意度等級(jí),假設(shè)兩地區(qū)用戶的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且,若直線與橢圓交于不同兩點(diǎn)、、都在軸上方),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線的方程;

3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)到短軸的端點(diǎn)的距離為,離心率為

1)求橢圓的方程;

2)過點(diǎn)的直線交橢圓兩點(diǎn),過點(diǎn)作平行于軸的直線,交直線于點(diǎn),求證:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上一點(diǎn),經(jīng)過點(diǎn)的直線與拋物線交于、兩點(diǎn)(不同于點(diǎn)),直線、分別交直線于點(diǎn)、.

1)求拋物線方程及其焦點(diǎn)坐標(biāo);

2)求證:以為直徑的圓恰好經(jīng)過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中所有正確的序號(hào)是_________

①兩直線的傾斜角相等,則斜率必相等;

②若動(dòng)點(diǎn)到定點(diǎn)和定直線的距離相等,則動(dòng)點(diǎn)的軌跡是拋物線;

③已知、是橢圓的兩個(gè)焦點(diǎn),過點(diǎn)的直線與橢圓交于、兩點(diǎn),則的周長為;

④曲線的參數(shù)方程為為參數(shù),則它表示雙曲線且漸近線方程為;

⑤已知正方形,則以為焦點(diǎn),且過、兩點(diǎn)的橢圓的離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的內(nèi)心為,、、分別是邊、、的中點(diǎn),證明:直線平分的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合具有以下性質(zhì):(1;(2)若,,則,且當(dāng)時(shí),,則稱集合閉集”.

1)試判斷集合是否為閉集,請(qǐng)說明理由;

2)設(shè)集合閉集,求證:若,,則

3)若集合是一個(gè)閉集,試判斷命題,,則的真假,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案