【題目】已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為.
(1)求橢圓的標準方程;
(2)已知圓,直線.試證:當點在橢圓上運動時,直線與圓恒相交,并求直線被圓所截得弦長的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】某集團公司計劃從甲分公司中的3位員工、、和乙分公司中的3位員工、、選擇2位員工去國外工作.
(1)若從這6名員工中任選2名,求這2名員工都是甲分公司的概率;
(2)若從甲分公司和乙分公司中各任選1名員工,求這2名員工包括但不包括的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓.
(1)若圓與軸相切,求圓的方程;
(2)已知,圓與軸相交于兩點(點在點的左側).過點任作一條與軸不重合的直線與圓相交于兩點.問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,且,向量, .
(1)求函數(shù)的解析式,并求當時, 的單調(diào)遞增區(qū)間;
(2)當時, 的最大值為5,求的值;
(3)當時,若不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關,現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量×(萬輛) | 50 | 51 | 54 | 57 | 58 |
PM2.5的濃度(微克/立方米) | 60 | 70 | 74 | 78 | 79 |
(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)若周六同一時間段的車流量是25萬輛,試根據(jù)(1)求出的線性回歸方程,預測此時PM2.5的濃度為多少(保留整數(shù))?
參考公式:由最小二乘法所得回歸直線的方程是:,其中,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標是函數(shù)f(x)的不動點,且A,B兩點關于直線y=kx+對稱,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗將只小鼠隨機分成、兩組,每組只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學方法測算出殘留在小鼠體內(nèi)離子的百分比根據(jù)試驗數(shù)據(jù)分別得到如圖所示的直方圖:
根據(jù)頻率分布直方圖估計,事件:“乙離子殘留在體內(nèi)的百分比不高于”發(fā)生的概率.
(1)根據(jù)所給的頻率分布直方圖估計各段頻數(shù);
(附:頻數(shù)分布表)
組實驗甲離子殘留頻數(shù)表 | |||
組實驗乙離子殘留頻數(shù)表 | |||
(2)請估計甲離子殘留百分比的中位數(shù),請估計乙離子殘留百分比的平均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com