精英家教網 > 高中數學 > 題目詳情

甲、乙兩人玩猜數字游戲,規(guī)則如下:
①連續(xù)競猜次,每次相互獨立;
②每次竟猜時,先由甲寫出一個數字,記為,再由乙猜測甲寫的數字,記為,已知,若,則本次競猜成功;
③在次競猜中,至少有次競猜成功,則兩人獲獎.
(Ⅰ) 求甲乙兩人玩此游戲獲獎的概率;
(Ⅱ)現從人組成的代表隊中選人參加此游戲,這人中有且僅有對雙胞胎,記選出的人中含有雙胞胎的對數為,求的分布列和期望.

(1)
(2)分布列為









解析試題分析:解:(Ⅰ)記事件為甲乙兩人一次競猜成功,則
則甲乙兩人獲獎的概率為

(Ⅱ)由題意可知6人中選取4人,雙胞胎的對數取值為0,1,2
,
∴分布列為










考點:古典概型概率和分布列
點評:主要是考查了古典概型概率和分布列的求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某校學習小組開展“學生語文成績與外語成績的關系”的課題研究,對該校高二年級800名學生上學期期末語文和外語成績,按優(yōu)秀和不優(yōu)秀分類得結果:語文和外語都優(yōu)秀的有60人,語文成績優(yōu)秀但外語不優(yōu)秀的有140人,外語成績優(yōu)秀但語文不優(yōu)秀的有100人.
(Ⅰ)能否在犯錯概率不超過0.001的前提下認為該校學生的語文成績與外語成績有關系?
(Ⅱ)4名成員隨機分成兩組,每組2人,一組負責收集成績,另一組負責數據處理。求學生甲分到負責收集成績組,學生乙分到負責數據處理組的概率。


0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:.
(I)求圖中的值并根據頻率分布直方圖估計這500名志愿者中年齡在歲的人數;
(II)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某聯歡晚會舉行抽獎活動,舉辦方設置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中將與否互不影響,晚會結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明.小紅兩人都選擇方案甲或方案乙進行抽獎,問:他們選擇何種方案抽獎,累計的得分的數學期望較大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某產品的三個質量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產品的等級. 若S≤4, 則該產品為一等品. 現從一批該產品中, 隨機抽取10件產品作為樣本, 其質量指標列表如下:

產品編號
A1
A2
A3
A4
A5
質量指標(x, y, z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產品編號
A6
A7
A8
A9
A10
質量指標(x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(Ⅰ) 利用上表提供的樣本數據估計該批產品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產品,
(1) 用產品編號列出所有可能的結果;
(2) 設事件B為 “在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從一批蘋果中,隨機抽取50個,其重量(單位:克)的頻數分布表如下:

分組(重量)




頻數(個)
5
10
20
15
(1) 根據頻數分布表計算蘋果的重量在的頻率;
(2) 用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?
(3) 在(2)中抽出的4個蘋果中,任取2個,求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝局者獲得比賽的勝利,比賽隨即結束。除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是。假設各局比賽結果相互獨立。
(Ⅰ)分別求甲隊以勝利的概率;
(Ⅱ)若比賽結果為求,則勝利方得分,對方得分;若比賽結果為,則勝利方得分、對方得分。求乙隊得分的分布列及數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數據,數據統(tǒng)計如下:

組別
PM2.5濃度
(微克/立方米)
頻數(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

四名教師被分到甲、乙、丙三所學校參加工作,每所學校至少一名教師.
(Ⅰ)求、兩名教師被同時分配到甲學校的概率;
(Ⅱ)求、兩名教師不在同一學校的概率;
(Ⅲ)設隨機變量為這四名教師中分配到甲學校的人數,求的分布列和數學期望.

查看答案和解析>>

同步練習冊答案