5.一個(gè)幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.$\frac{20}{3}$cm3B.$\frac{22}{3}$cm3C.4cm3D.6cm3

分析 由三視圖可知:該幾何體是一個(gè)四棱柱.利用體積公式即可得出.

解答 解:由三視圖可知:該幾何體是一個(gè)四棱柱.
∴該幾何體的體積=$\frac{(1+2)}{2}×2$×2=6cm3
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算、四棱柱的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A.28+6$\sqrt{5}$B.40C.$\frac{40}{3}$D.30+6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如表:
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)31012721
(Ⅰ)若以“年齡45歲為分界點(diǎn)”.由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為
“使用微信交流”的態(tài)度與人的年齡有關(guān):
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
贊成
不贊成
合計(jì)
(Ⅱ)若從年齡在[55,65),[65,75)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查.記選中的4人中贊成“使用微信交流”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望
參考數(shù)據(jù)如下:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某多面體的三視圖,則此多面體的體積等于( 。
A.$\frac{32}{3}$B.16C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,則該幾何體體積是( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某四棱錐的三視圖,則該四棱錐的四個(gè)側(cè)面中面積最大的一個(gè)側(cè)面的面積為( 。
A.8$\sqrt{6}$B.8$\sqrt{2}$C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=$\sqrt{4x-3}$+$\sqrt{11-4x}$($\frac{3}{4}$<x<$\frac{11}{4}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,己知a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{{2}^{n-1}}$(n≥2且n∈N*
(1)若bn=$\frac{{a}_{n}}{n}$,求數(shù)列{bn}的通項(xiàng)公式;
(2)記數(shù)列{an}的前項(xiàng)和為Sn,問在△ABC中是否存在內(nèi)角θ使Sn-n•tan2θ+5≥$\frac{n+2}{{2}^{n-1}}$對(duì)任意的n∈N*恒成立,若存在,求出角θ的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義一種運(yùn)算a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,令f(x)=(3x2+6x)?(2x+3-x2),則函數(shù)f(x)的最大值是4.

查看答案和解析>>

同步練習(xí)冊(cè)答案