【題目】如圖,在平面直角坐標系xOy中,已知為橢圓的上頂點,P為橢圓E上異于上、下頂點的一個動點.當點P的橫坐標為時,

1)求橢圓E的標準方程;

2)設(shè)Mx軸的正半軸上的一個動點.

①若點P在第一象限內(nèi),且以AP為直徑的圓恰好與x軸相切于點M,求AP的長.

②若,是否存在點N,滿足,且AN的中點恰好在橢圓E上?若存在,求點N的坐標;若不存在,請說明理由.

【答案】1;(2)①;②存在點滿足題意.

【解析】

1)根據(jù)題意可知,可求出P點坐標,代入方程求出即可;

2)①設(shè),則可表示出圓心坐標可設(shè)為,,根據(jù)圓的性質(zhì)及點P在橢圓上列出方程組求解即可;

②設(shè),,根據(jù) AN的中點恰好在橢圓E上,且得到點坐標,即可求解.

1)因為是橢圓E的上頂點,所以

當點P的橫坐標為時,

設(shè),則,解得

所以橢圓E的標準方程為

2)①設(shè),則以AP為直徑的圓的圓心坐標可設(shè)為

又因為,所以

因為,所以,

因為點P在橢圓E上,所以,

聯(lián)立解得(負值舍去),

所以

②設(shè),

因為,

所以

解得,

所以AN的中點坐標為

因為AN的中點在橢圓E上,

所以.(*

因為,所以

因為點P在橢圓E上,

所以,(**

聯(lián)立消去

又因為,所以

代入(*)式和(**)式得

消去m

又因為.所以,

代入(**)式和,

解得(負值舍去),

綜上,存在點,滿足

AN的中點恰好在橢圓E上.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于,兩點.

1)若過點,證明:;

2)若,點在曲線上,的中點均在拋物線上,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于兩點,且(其中為坐標原點),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點為正方形上異于點的動點,將沿翻折成,在翻折過程中,下列說法正確的是(

A.存在點和某一翻折位置,使得

B.存在點和某一翻折位置,使得平面

C.存在點和某一翻折位置,使得直線與平面所成的角為45°

D.存在點和某一翻折位置,使得二面角的大小為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過拋物線的焦點且與軸垂直的直線與拋物線在第一象限交于點的面積為,其中為坐標原點.

1)求拋物線的標準方程;

2)若,,為拋物線上的兩個不同的點,直線的斜率分別為,,且,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱A蔬菜),購入價為200/袋,并以300/袋的價格售出,若前8小時內(nèi)所購進的A蔬菜沒有售完,則批發(fā)商將沒售完的A蔬菜以150/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把A蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100A蔬菜在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購入6A蔬菜,有4A蔬菜在前8小時內(nèi)分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現(xiàn)從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150/袋的價格購買的概率是多少?

2)若今年A蔬菜上市的100天內(nèi),該蔬菜批發(fā)商每天都購進A蔬菜5袋或者每天都購進A蔬菜6袋,估計這100天的平均利潤,以此作為決策依據(jù),該蔬菜批發(fā)商應選擇哪一種A蔬菜的進貨方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)討論上的單調(diào)性;

2)當時,若存在正實數(shù),使得對,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進人市場之前需要對產(chǎn)品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進人市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如表所示:

1

甲公司

得分

[50,60

[60,70

[70,80

[8090

[90,100]

件數(shù)

10

10

40

40

50

天數(shù)

10

10

10

10

80

2

甲公司

得分

[50,60

[60,70

[70,80

[8090

[90,100]

件數(shù)

10

5

40

45

50

天數(shù)

20

10

20

10

70

3

每件正品

每件次品

甲公司

2萬元

3萬元

乙公司

3萬元

3.5萬元

1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分數(shù)表示).

2)試問甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.

3)若以甲公司這100天中每天產(chǎn)品利潤總和對應的頻率作為概率,從甲公司這100天隨機抽取1天,記這天產(chǎn)品利潤總和為X,求X的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨立,則他們都命中的概率為0.18.

1)求甲、乙、丙三人投籃的命中率;

2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨立,記三人命中總次數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案