【題目】已知直線與橢圓交于兩點,且(其中為坐標原點),若橢圓的離心率滿足,則橢圓長軸的取值范圍是( )
A. B. C. D.
【答案】A
【解析】
聯(lián)立直線方程與橢圓方程得(a2+b2)x2﹣2a2x+a2﹣a2b2=0,設(shè)P(x1,y1),Q(x2,y2),由OP⊥OQ,得=0,由根與系數(shù)的關(guān)系可得:a2+b2=2a2b2.由橢圓的離心率e滿足≤e≤,化為,即可得出.
聯(lián)立 得:(a2+b2)x2﹣2a2x+a2﹣a2b2=0,設(shè)P(x1,y1),Q(x2,y2)
△=4a4﹣4(a2+b2)(a2﹣a2b2)>0,化為:a2+b2>1.
x1+x2= ,x1x2=.∵OP⊥OQ,
∴=x1x2+y1y2=x1x2+(x1﹣1)(x2﹣1)=2x1x2﹣(x1+x2)+1=0,
∴2×﹣+1=0.化為a2+b2=2a2b2.∴b2=.
∵橢圓的離心率e滿足≤e≤,∴,∴,,化為5≤4a2≤6.
解得: ≤2a≤ .滿足△>0.∴橢圓長軸的取值范圍是[,].
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)).以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)設(shè)動直線:分別與曲線,相交于點,,求當為何值時,取最大值,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系xOy的坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程是,曲線C2的參數(shù)方程是(θ為參數(shù)).
(1)寫出曲線C1,C2的普通方程;
(2)設(shè)曲線C1與y軸相交于A,B兩點,點P為曲線C2上任一點,求|PA|2+|PB|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,其中是自然對數(shù)的底數(shù),.
(1)當時,證明:;
(2)是否存在實數(shù),使的最小值為3,如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,點為半徑為千米的圓形海島的最東端,點為最北端,在點的正東千米處停泊著一艘緝私艇,某刻,發(fā)現(xiàn)在處有一小船正以速度 (千米/小時)向正北方向行駛,已知緝私艇的速度為(千米/小時) .
(1)為了在最短的時間內(nèi)攔截小船檢查,緝私艇應向什么方向行駛? (精確到)
(2)海島上有一快艇要為緝私艇送去給養(yǎng),問選擇海島邊緣的哪一點出發(fā)才能行程最短? (如圖2建立坐標系, 用坐標表示點的位置)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為元,低于箱按原價銷售,不低于箱則有以下兩種優(yōu)惠方案:①以箱為基準,每多箱送箱;②通過雙方議價,買方能以優(yōu)惠成交的概率為,以優(yōu)惠成交的概率為.
甲、乙兩單位都要在該廠購買箱這種零件,兩單位都選擇方案②,且各自達成的成交價格相互獨立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;
某單位需要這種零件箱,以購買總價的數(shù)學期望為決策依據(jù),試問該單位選擇哪種優(yōu)惠方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正和一個平行四邊形ABDE在同一個平面內(nèi),其中,,AB,DE的中點分別為F,G.現(xiàn)沿直線AB將翻折成,使二面角為,設(shè)CE中點為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com