【題目】函數(shù).

(1)若,試討論函數(shù)的單調(diào)性;

(2)若有兩個零點(diǎn),求的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)第(1)問,一般求導(dǎo)后,求函數(shù)的單調(diào)性. (2)第(2)問,一般要利用第一問的結(jié)論同時要對a分類討論,結(jié)合函數(shù)的圖像和性質(zhì)分析求出a的取值范圍.

試題解析: .

(1)若,則時恒成立,∴的增區(qū)間是.

(2)①若,由(1)知上單增,故不可能有兩個零點(diǎn).

②若,令,則,

上單減,

,,

,使得,即,

當(dāng)時,,即;當(dāng)時,,即.

上單增,在上單減,

.

有兩個零點(diǎn),首先須

,則上單增,

,∴須,∴ ,

得到,

此時,(1),∴,

.

(2)取,則,

,

各一個零點(diǎn),

綜上,有兩個零點(diǎn),的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把[0,1]內(nèi)的均勻隨機(jī)數(shù)x分別轉(zhuǎn)化為[0,2]和內(nèi)的均勻隨機(jī)數(shù)y1,y2,需實(shí)施的變換分別為( )

A. , B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實(shí)線為甲的折線圖,虛線為乙的折線圖),則以下說法錯誤的是( )

A. 甲投籃命中次數(shù)的眾數(shù)比乙的小

B. 甲投籃命中次數(shù)的平均數(shù)比乙的小

C. 甲投籃命中次數(shù)的中位數(shù)比乙的大

D. 甲投籃命中的成績比乙的穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),且.

(1)若,求函數(shù)的表達(dá)式;

(2)在(1)的條件下,設(shè)函數(shù),若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù)使得函數(shù)在[-1,4]上的最大值是4?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,直線與拋物線相切于點(diǎn),與圓相切于點(diǎn).

(1)若直線的斜率,求直線和拋物線的方程;

(2)設(shè)為拋物線的焦點(diǎn),設(shè),的面積分別為,,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合按照對應(yīng)關(guān)系不能構(gòu)成從AB的映射的是( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過拋物線的焦點(diǎn),,分別是橢圓的左、右焦點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與拋物線相切,且與橢圓交于,兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,⊥底面,的中點(diǎn).

已知,.求:

(1)三棱錐PABC的體積;

(2)異面直線BCAD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn) ,且滿足.證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案