2.若有5本小說(shuō),6本雜志,從這幾本書(shū)中任取三本,其中必須包括小說(shuō)和雜志,則不同的取法種數(shù)有135種.

分析 5本小說(shuō),6本雜志,從這幾本書(shū)中任取三本,其中必須包括小說(shuō)和雜志,即為2本小說(shuō)1本雜志或1本小說(shuō)2本雜,根據(jù)分類(lèi)計(jì)數(shù)原理可得.

解答 解:5本小說(shuō),6本雜志,從這幾本書(shū)中任取三本,其中必須包括小說(shuō)和雜志,即為2本小說(shuō)1本雜志或1本小說(shuō)2本雜志
利用直接法可得不同的取法種數(shù)C52C61+C51C62=135種,
故答案為:135.

點(diǎn)評(píng) 本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{a}$+$\frac{a}{x}$(a為常數(shù),x>0),
(Ⅰ)求函數(shù)f(x)在(0,+∞)上的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=$\frac{1}{2}$時(shí)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)與直線(xiàn)2x+3y-3=0垂直,求曲線(xiàn)在該點(diǎn)處的切線(xiàn)方程;
(2)求證:f(x)>lnx+$\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給出下列四個(gè)結(jié)論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②若x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠0)的圖象必過(guò)點(diǎn)(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確的結(jié)論是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題P(n)滿(mǎn)足:①對(duì)任意的n∈N*,P(2n)是真命題;②假如P(n)(n∈N*,n>1)是真命題,則P(n-1)也是真命題.下列判斷正確的是( 。
A.對(duì)任意n∈N*,P(n)是真命題
B.對(duì)任意n∈N*,僅有P(2n)是真命題
C.對(duì)任意n∈N*,僅有P(2n)和P(2n-1)是真命題
D.對(duì)任意n∈N*,P(n)不是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.現(xiàn)從甲、乙、丙、丁、戊5名大學(xué)生中選出4名參加雅安地震志愿者服務(wù)活動(dòng),分別從事心理輔導(dǎo)、醫(yī)療服務(wù)、清理垃圾、照顧老人這四項(xiàng)工作,但甲不能從事心理輔導(dǎo)、乙不能從事醫(yī)療服務(wù),丙、丁、戊都能勝任四項(xiàng)工作,則不同安排方案的種數(shù)是78.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.七個(gè)人排成一列做體操,其中:
(1)甲在中間的排法有多少種?
(2)甲在首位或末位的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.語(yǔ)文、外語(yǔ)、數(shù)學(xué)、物理、化學(xué)5門(mén)課的任課老師和課代表站成一排照相.
(1)5名課代表必須排在一起的排法有多少種?
(2)5名老師互不相鄰的排法有多少種?
(3)語(yǔ)文老師不能站在最左邊、數(shù)學(xué)老師不能站在最右邊的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,設(shè)向量$\overrightarrow{p}$=(b+a,c),向量$\overrightarrow{q}$=(b-c,b-a),且$\overrightarrow{p}$∥$\overrightarrow{q}$.
(Ⅰ)求A的大;
(Ⅱ)若sinB•sinC=$\frac{3}{4}$,判定△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在直三棱柱ABC-A1B1C1中,底面是正三角形,點(diǎn)D是A1B1中點(diǎn),AC=2,CC1=$\sqrt{2}$.
(Ⅰ)求三棱錐C-BDC1的體積;
(Ⅱ)證明:A1C⊥BC1

查看答案和解析>>

同步練習(xí)冊(cè)答案