4.如圖是一個空間幾何體的三視圖,其中主視圖上半部分是一個底面邊長為4、高為1的等腰三角形,主視圖下半部分是一個邊長為2的正方形,則該空間幾何體的體積是( 。
A.$(8+2\sqrt{5})π$B.$\frac{10π}{3}$C.$(10+2\sqrt{5})π$D.$\frac{8π}{3}$

分析 幾何體上部為圓錐,下部為圓柱,代入體積公式計算即可.

解答 解:由三視圖可知幾何體上部分為圓錐,下部分為圓柱,
其中,圓錐的底面直徑為4,高為1,圓柱的底面直徑為2,高為2,
∴幾何體的體積V=$\frac{1}{3}×π×{2}^{2}×1$+π×12×2=$\frac{10π}{3}$.
故選B.

點(diǎn)評 本題考查了空間幾何體的三視圖,體積計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且$cos2C=-\frac{1}{4}$,$0<C<\frac{π}{2}$.
(1)求cosC的值;
(2)當(dāng)a=2,2sinA=sinC時,求b及c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在正方形ABCD的邊上任取一點(diǎn)M,則點(diǎn)M剛好取自邊AB上的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a1=2,an≠0,且an+1-an=2an+1an,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知動圓C過定點(diǎn)T(2,0),且在y軸上截得的弦PQ為4.
(Ⅰ)求動圓圓心C的軌跡曲線E的方程;
(Ⅱ)設(shè)A、B是曲線E上位于x軸兩側(cè)的兩動點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5,
(i)求證:直線AB過定點(diǎn)D,并求出定點(diǎn)D的坐標(biāo).
(ii)過(i)中的D點(diǎn)作AB的垂線交曲線E于M、N兩點(diǎn),求四邊形AMBN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知一個三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為(  )
A.17πB.16πC.D.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,正確的是( 。
A.若輸入a,b,c的值依次為1,2,3,則輸出的值為5
B.若輸入a,b,c的值依次為1,2,3,則輸出的值為7
C.若輸入a,b,c的值依次為2,3,4,則輸出的值為8
D.若輸入a,b,c的值依次為2,3,4,則輸出的值為10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$tanα=\frac{1}{7}$,$tanβ=\frac{1}{3}$,求tan(α+β);tan(α+2β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.運(yùn)行如圖所示的程序框圖,若輸入的實(shí)數(shù)為2,則輸出的n為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案