分析 (1)在定義域(0,+∞)內(nèi)對函數(shù)f(x)求導,求其極大值,若是唯一極值點,則極大值即為最大值.
(2)在定義域(0,+∞)內(nèi)對函數(shù)f(x)求導,對a進行分類討論并判斷其單調(diào)性,根據(jù)f(x)在區(qū)間(0,e]上的單調(diào)性求其最大值,并判斷其最大值是否為-3,若是就可求出相應的最大值.
(3)先求導,再求導,得到g′(x)為增函數(shù),不妨令x2>x1,構造函數(shù)$h(x)=g(x)+g({x_1})-2g(\frac{{{x_1}+x}}{2})(x>{x_1})$,利用導數(shù)即可證明
解答 解:(1)易知f(x)定義域為(0,+∞),
當a=-1時,f(x)=-x+lnx,${f^'}(x)=-1+\frac{1}{x}=\frac{1-x}{x}$,
令f′(x)=0,得x=1.
當0<x<1時,f′(x)>0;當x>1時,f′(x)<0,
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù).
f(x)max=f(1)=-1.
∴函數(shù)f(x)在(0,+∞)上的最大值為-1,
(2)∵${f^'}(x)=a+\frac{1}{x},x∈(0,e],\frac{1}{x}∈[\frac{1}{e},+∞)$.
①若$a≥-\frac{1}{e}$,則f′(x)≥0,從而f(x)在(0,e]上是增函數(shù),
∴f(x)max=f(e)=ae+1≥0,不合題意,
②若$a<-\frac{1}{e}$,則由${f^'}(x)>0⇒a+\frac{1}{x}>0$,即$0<x<-\frac{1}{a}$
由${f^'}(x)<0⇒a+\frac{1}{x}<0$,即$-\frac{1}{a}<x≤e$,
從而f(x)在(0,-$\frac{1}{a}$)上增函數(shù),在(-$\frac{1}{a}$,e]為減函數(shù)
∴$f{(x)_{max}}=f(-\frac{1}{a})=-1+ln(-\frac{1}{a})$
令$-1+ln(-\frac{1}{a})=-3$,則$ln(-\frac{1}{a})=-2$,
∴a=-e2,
(3)證明:∵g(x)=xf(x)=ax2+xlnx,x>0
∴${g^'}(x)=2ax+1+lnx,{g^{''}}(x)=2a+\frac{1}{x}>0$,
∴g′(x)為增函數(shù),不妨令x2>x1
令$h(x)=g(x)+g({x_1})-2g(\frac{{{x_1}+x}}{2})(x>{x_1})$,
∴${h^'}(x)=g'(x)-{g^'}(\frac{{{x_1}+x}}{2})$,
∵$x>\frac{{{x_1}+x}}{2}$,
∴${h^'}(x)=g'(x)-{g^'}(\frac{{{x_1}+x}}{2})>0$
而h(x1)=0,知x>x1時,h(x)>0
故h(x2)>0,
即$2g(\frac{{{x_1}+{x_2}}}{2})<g({x_1})+g({x_2})$
點評 本題先通過對函數(shù)求導,求其極值,進而在求其最值及值域,用到分類討論的思想方法,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4n | B. | 2n | C. | n | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
非手機迷 | 手機迷 | 合計 | |
男 | x | x | m |
女 | y | 10 | 55 |
合計 | 75 | 25 | 100 |
P(k2≥x0) | 0.05 | 0.10 |
k0 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1<0 | B. | ?x∈R,x3-x2+1≤0 | ||
C. | ?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1≤0 | D. | ?x∈R,x3-x2+1>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 140種 | B. | 80種 | C. | 70種 | D. | 35種 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com