【題目】已知函數(shù)上為增函數(shù),,為常數(shù), .

(1)的值;(2)上為單調(diào)函數(shù),的取值范圍;

(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.

【答案】(1) (2) (3)

【解析】

試題分析:1)由題意可知.由θ∈(0,π),知sinθ>0.再由sinθ≥1,結(jié)合θ∈(0π),可以得到θ的值;2)由題設(shè)條件知(f(x)g(x))或者在[1,+)恒成立.由此知,由此可知m的取值范圍;3)構(gòu)造Fx=fx-gx-hx),.由此入手可以得到m的取值范圍

試題解析:1)由題意:上恒成立,即

上恒成立,

只需sin

(2) (1),f(x)-g(x)=-,,由于f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),則上恒成立,即上恒成立,故,綜上,m的取值范圍是

3)構(gòu)造函數(shù)F(x)=f(x)-g(x)-h(x),,

當(dāng)得,,所以在上不存在一個,使得;

當(dāng)m>0時,,因為,所以上恒成立,故F(x)上單調(diào)遞增,,故m的取值范圍是

另法:(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是銳角三角形,cos22A+sin2A=1.

)求角A;

)若BC=1,B=x,求ABC的周長f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若對滿足的一切的值,都有,求實數(shù)的取值范圍;

(3)若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖,已知四棱錐中,底面為菱形,平面,,,分別是,的中點.

I)證明:平面

II)取,在線段上是否存在點,使得與平面所成最大角的正切值為,若存在,請求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.

I)先求出的值,再將如圖4所示的頻率分布直方圖繪制完整;

II)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,

購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)

此判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飛機失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊展開搜索,小島在正方形編隊外(如圖).設(shè)小島的距離為,,船到小島的距離為.

(1)請分別求關(guān)于的函數(shù)關(guān)系式,并分別寫出定義域;

(2)當(dāng)兩艘船之間的距離是多少時搜救范圍最大(即最大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,證明:函數(shù)不是奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;

3)若是奇函數(shù),且時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點,過點的直線交拋物線兩點.

(Ⅰ)若點滿足,求直線的方程;

(Ⅱ)為直線上任意一點,過點的垂線交橢圓兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元

1若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;

2若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值

查看答案和解析>>

同步練習(xí)冊答案