已知函數(shù)f(x)是定義在(-6,6)上的偶函數(shù),f(x)在[0,6]上是單調(diào)函數(shù),且f(-2)≤f(1),f(-2)=25,那么下列肯定不正確的是(  )
A、f(1)≥25
B、f(2)=25
C、f(1)<25
D、f(1)>25
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用偶函數(shù)的性質(zhì)f(-x)=f(x),得出f(2),再用單調(diào)性判斷答案.
解答: 解:∵函數(shù)為偶函數(shù),∴f(-x)=f(x),
∴f(-2)=f(2),∴f(2)=f(-2)=25,
又∵f(-2)≤f(1),
∴f(2)≤f(1)
f(x)在[0,6]上是單調(diào)函數(shù),
∴f(2)<f(1),∴f(1)>25
∴,故C明顯錯誤,
故選:C.
點評:本題主要考察偶函數(shù)的性質(zhì),充分利用偶函數(shù)的性質(zhì)是解題的關(guān)鍵;本題屬于低檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用0,1,2,5,7,9組成沒有重復(fù)數(shù)字的四位數(shù),求出現(xiàn)下列各種情況的四位數(shù)的概率:
(1)2不在千位;
(2)能被25整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=logax在區(qū)間[2,+∞﹚上恒有y>1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sin2α=-sinα,α∈(
π
2
,π),則tanα的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在坐標原點O,且與直線l1:x-y-2
2
=0相切.
(1)求直線l2:4x-3y+5=0被圓C所截得的弦AB的長;
(2)若與直線l1垂直的直線與圓C交于不同的兩點P,Q,且以PQ為直徑的圓過原點,求直線的縱截距;
(3)過點G(1,3)作兩條與圓C相切的直線,切點分別為M,N,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=(1-x)•x,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M是y=
1
4
x2
上一點,F(xiàn)為拋物線的焦點,A在C:(x-1)2+(y-4)2=1上,則|MA|+|MF|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列
3
2
,-
1
2
,-
5
2
,-
9
2
,…的一個通項公式是( 。
A、2n-
1
2
B、
3
2
-2n
C、
7
2
-2n
D、
3
2
+2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于給定的實數(shù)a、b,定義運算“⊕”:s=a⊕b.若其運算法則如程序框圖所示,則集合{y|y=(1⊕x)•x+(2⊕x),x∈[-2,2]}(注:“•”和“+”表示實數(shù)的乘法和加法運算)的最大元素是
 

查看答案和解析>>

同步練習(xí)冊答案