14.已知x,y的取值如表:
x3456
y2.5t44.5
從散點圖分析,y與x線性相關(guān),且回歸方程為$\widehat{y}$=0.7x+0.35,則t的值為3.

分析 求出$\overline{x}$,代入回歸方程得出$\overline{y}$,列出方程解出t.

解答 解:$\overline{x}$=$\frac{3+4+5+6}{4}=4.5$,
∴$\overline{y}$=0.7×4.5+0.35=3.5.
∴$\frac{2.5+t+4+4.5}{4}=3.5$,解得t=3.
故答案為3.

點評 本題考查了線性回歸方程的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,點M(3,$\sqrt{2}$)在此雙曲線上,且|MF1|與|MF2|的夾角的余弦值為$\frac{7}{9}$,則雙曲線C的離心率為(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C2的漸近線方程為( 。
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知中心在原點,焦點在x軸上的雙曲線C的離心率等于$\frac{3}{2}$,其中一條準(zhǔn)線方程為x=$\frac{4}{3}$,則雙曲線C的方程是( 。
A.$\frac{x^2}{4}-\frac{y^2}{5}$=1B.$\frac{x^2}{4}-\frac{y^2}{{\sqrt{5}}}$=1C.$\frac{x^2}{2}-\frac{y^2}{{\sqrt{5}}}$=1D.$\frac{x^2}{2}-\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線f(x)=lnx在點(1,0)處的切線與坐標(biāo)軸所圍成的三角形的面積為( 。
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.隨著我國進入老齡化杜會和“全面二孩”政策的落地,醫(yī)藥服務(wù)的剛性需求將更加凸顯,自“互聯(lián)網(wǎng)+”提出以來,“醫(yī)藥互聯(lián)網(wǎng)+”在全行業(yè)迅速引起共鳴,傳統(tǒng)醫(yī)藥產(chǎn)業(yè)與互聯(lián)網(wǎng)產(chǎn)業(yè)相互滲透加速,改革紅利不斷釋放,某調(diào)查機構(gòu)就人們對“醫(yī)藥互聯(lián)網(wǎng)+”的了解情況在某一社區(qū)分別對中、老年人進行調(diào)查,得到數(shù)據(jù)如下:
  中年人 老年人 總計
 了解 40 20 60
 不了解 20 30 50
 總計 60 50110
(1)根據(jù)以上表格,判斷是否有99%的把握認(rèn)為是否了解“醫(yī)藥互聯(lián)網(wǎng)+”與年齡段有關(guān);
(2)若將中年人中了解“醫(yī)藥互聯(lián)網(wǎng)+”的頻率視為概率,從全體中年人中隨機抽取6位,設(shè)隨機變量X表示了解“醫(yī)藥互聯(lián)網(wǎng)+”的人數(shù),求X的分布列及期望E(X)
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$•n=a+b+c+d.
 P(k2≥kn 0.050 0.010 0.001
 kn 3.841 6.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.安排6志愿者去做3項不同的工作,每項工作需要2人,由于工作需要,A,B二人必須做同一項工作,C,D二人不能做同一項工作,那么不同的安排方案有12種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=AC=PB=2,O為AC的中點,PO⊥平面ABCD,M為PD的中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)求三棱錐P-MAC的體積.

查看答案和解析>>

同步練習(xí)冊答案