【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)設(shè),求函數(shù)的單調(diào)區(qū)間;
(3)設(shè),求證:當(dāng)時,函數(shù)恰有2個不同零點.
【答案】(1)(2)單調(diào)增區(qū)間為和;單調(diào)減區(qū)間為和.(3)證明見解析
【解析】
(1)由,得,所以,即可求得答案;
(2),根據(jù)導(dǎo)數(shù),分別討論和函數(shù)的單調(diào)性,即可求得函數(shù)的單調(diào)區(qū)間;
(3)因為,設(shè),得,令,當(dāng),,結(jié)合已知和零點定義,即可求得答案.
(1)由,得,
,
曲線在處的切線方程為.
(2),
當(dāng)時,,
函數(shù)的單調(diào)增區(qū)間為.
當(dāng)時,,
,
令,得;
令,得或,
函數(shù)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為和.
綜上所述,函數(shù)的單調(diào)增區(qū)間為和;
函數(shù)的單調(diào)減區(qū)間為和.
(3)由題意知,,
得,
令,
當(dāng)時,,
在上單調(diào)遞增,
又,,
存在唯一的,使得,
當(dāng)時,,
在上單調(diào)遞減,
當(dāng)時,,
在上單調(diào)遞增,
故是的唯一極值點,
令,
當(dāng)時,,
在上單調(diào)遞減,
即當(dāng)時,,即,
,
又,
函數(shù)在上有唯一的零點,
又在上有唯一的零點,
函數(shù)恰有2個不同零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給圖中A,B,C,D,E,F六個區(qū)域進行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西光廠眼鏡車間接到一批任務(wù),需要加工6000個型零件和2000個型零件.這個車間有214名工人,他們每一個人加工5個型零件的時間可以加工3個型零件.將這些工人分成兩組,兩組同時工作,每組加工一種型號的零件,為了在最短的時間內(nèi)完成這批任務(wù),應(yīng)怎樣分組?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊疫情,中國人民心連心,向世界展示了中華名族的團結(jié)和偉大,特別是醫(yī)護工作者被人們尊敬的稱為“最美逆行者”,各地醫(yī)務(wù)工作者主動支援湖北武漢.現(xiàn)有7名醫(yī)學(xué)專家被隨機分配到“雷神山”、“火神山”兩家醫(yī)院.
(1)求7名醫(yī)學(xué)專家中恰有兩人被分配到“雷神山”醫(yī)院的概率;
(2)若要求每家醫(yī)院至少一人,設(shè),分別表示分配到“雷神山”、“火神山”兩家醫(yī)院的人數(shù),記,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列四個結(jié)論:
① 函數(shù)的最小正周期是;
② 函數(shù)在區(qū)間上是減函數(shù);
③ 函數(shù)的圖像關(guān)于點對稱;
④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個單位,再向下平移1個單位得到.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機抽取40名學(xué)生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競賽成績在與兩個分數(shù)段的學(xué)生中隨機選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
(3)為了激勵同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評出一二三等獎,得分在內(nèi)的為一等獎,得分在內(nèi)的為二等獎, 得分在內(nèi)的為三等獎.若將頻率視為概率,現(xiàn)從考生中隨機抽取三名,設(shè)為獲得三等獎的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,且G具有下列兩條性質(zhì):(1)對任何,恒有;(2).試證明:G中奇數(shù)的個數(shù)是4的倍數(shù),且G中所有數(shù)的平方和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知兩個變量線性相關(guān),若它們的相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1.
(2)線性回歸直線必過點;
(3)對于分類變量A與B的隨機變量,越大說明“A與B有關(guān)系”的可信度越大.
(4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.
(5)根據(jù)最小二乘法由一組樣本點,求得的回歸方程是,對所有的解釋變量,的值一定與有誤差.
以上命題正確的序號為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com